
Supporting Amnesia in Log-Based Recovery Protocols∗
Technical Report ITI-ITE-07/01

Rubén de Juan-Marı́n, Luis Irún-Briz and Francesc D. Muñoz-Escoı́
Instituto Tecnológico de Informática - Universidad Politécnica de Valencia

Camino de Vera, s/n - 46022 Valencia, Spain
Email: {rjuan, lirun, fmunyoz}@iti.upv.es

Abstract

Replicated systems are commonly used to provide highly
available and fault tolerant applications, based on the use
of replication and recovery protocols. Traditionally, the lit-
erature has focused on replicated systems which adopt the
fail-stop failure model which presents good performance
levels for replicated systems managing few state. This pa-
per points out how the crash-recovery with partial amne-
sia failure model presents a better accuracy for replicated
systems with huge state, but how its use has the amnesia
phenomenon drawback. Then, the paper analyzes this phe-
nomenon and how to deal with it in a basic configuration
using a log-based recovery approach. Analyzing after, how
it is supported and managed with other replication configu-
rations.

1 Introduction

Fault tolerance, high availability and performance are
success keys in nowadays information systems. Conse-
quently, distributed systems have been widely expanded
among organizations and enterprises in order to provide
these characteristics.

Particularly, replicated systems are the most common
way used to reach these goals, being replicated databases
one of the typical applications. Therefore several repli-
cation techniques have been largely studied and a wide
range of proposals have been implemented. Thus, latest
trends in replication techniques are oriented to make use
of group communication system semantics. In fact most
non-commercial solutions combine eager update propaga-
tion with constant interaction [23] using atomic broadcast
protocols [14], providing more efficient implementations.
A wide number of approaches [19, 15, 22] are described in

∗This work has been partially supported by the Spanish MEC grant
TIN2006-14738-C02-01.

the literature.
Group communication systems make use of membership

mechanisms, which are often provided to the applications
built atop of them (e.g. replication protocols). On one hand,
this mechanism excludes disconnected, failed or partitioned
nodes from the group, notifying the changes to survivor
nodes. On the other hand, it allows new incorporation to
the group or node reconnection, also notifying the member-
ship changes to the group members.

Usually, these join events may originate outdated nodes,
i.e. replicas that have lost some updates, and therefore with-
out the last state. But traditionally, replication protocols
do not give great relevance to the outdated nodes recovery,
since a full state transfer had been assumed in order to man-
age such events. So it seems to be needed a new architec-
ture component that knows what to do when: a node failure
occurs, a failed node rejoins to the group or a new node
is added to the replication system if a lot of state is being
maintained in the replicated servers. The functions of this
component are: to update replicas with an outdated system
state before becoming full-functional system nodes and to
colaborate with the replication protocol in order to store and
maintain the information used in the recovery processes.

This recovery process of outdated nodes can be carried
out in many ways, ranging from the simplest one (a backup
transfer) to more complex alternatives. But ideally, this
process must be performed without interfering the common
work of the replicated system. In this direction, a wide vari-
ety of recovery protocols has been presented in the literature
scoped on replicated databases, as [19, 17, 5] most of them
based on group communication.

In parallel, the traditional failure model adopted, the
crash or fail-stop, which ignores the outdated nodes re-
covery, presents a good behavior when the replicated sys-
tem manages few data state, but it is is not as good for
replicated systems with large data states where the out-
dated nodes recovery becomes a key point for building
fully-functional fault tolerant systems. Therefore, the use
of the crash-recovery with partial-amnesia failure model is



recommended for replicated systems which manage large
states, because it supports the recovery of outdated nodes
providing a better recovery performance. But, this assump-
tion gives to the amnesia phenomenon a key role in recovery
processes, phenomenon that if it is not correctly managed
can lead to diverging states in recovered nodes. Thus, this
paper is focused in this amnesia phenomenon, detailing at
which levels appears and how it can be treated avoiding its
dangerous effects on the recovery processes in log-based re-
covery strategies. Moreover, in this work it is also analyzed
which replication configurations can deal with this problem
and which modifications must be adopted to do so.

This paper is structured as follows. Section 2 details the
considered system model in this work, and the node sys-
tem architecture. A comparison between the fail-stop and
the crash-recovery with partial amnesia is performed in sec-
tion 3. Afterwards, the amnesia phenomenon is described
in section 4, explaining in the subsequent section 5 how
to deal with it in our initial replicated configuration using
a log-based recovery strategy. Section 6 details how the
amnesia problem can be managed in other replication con-
figurations depending on their characteristics and section 7
presents and overhead analysis. Finally, some related work
is given in section 8, and section 9 concludes the paper.

2 System Model

Our model considers a replicated transactional system,
which is compound by several replicas, whose architecture
is shown in figure 1, and where each replica is located in
a different node. These nodes belong to a partially syn-
chronous distributed system: their clocks are not synchro-
nized but the message transmission time is bounded. The
state is fully replicated in each node, so each replica has a
copy of the whole state. State changes are performed be-
tween the boundaries of transactions.

The replicated system uses a group communication sys-
tem (GCS). Point-to-point and broadcast deliveries are sup-
ported. The minimum guarantee provided is a FIFO and
reliable communication.

It is also assumed the presence of a group membership
service, who knows in advance the identity of all potential
system nodes. These nodes can join the group and leave
it either explicitly or implicitly by crashing. The group
membership service combined with the GCS provides Vir-
tual Synchrony[4] guarantees, thus each time a membership
change happens, it supplies consistent information about the
current set of reachable members. This information is given
in the format of views. Sites are notified about a new view
installation with view change events.

The view notification mechanism is extended with node
application state information providing the enriched view
synchrony [2] approach. This makes simpler and easier the

Replication Protocol

Recovery Protocol

GCS

Recovery Module

View Management Algorithm

Membership Service

Figure 1. Node Architecture

support of system cascading reconfigurations. These en-
riched views (e-view) not only inform about active nodes,
but they also inform about the state of active nodes: out-
dated or up-to-date. The use of e-views refines the primary
partition model into the primary subview model, therefore
the system only can work when a progress condition is ful-
filled1 as it is detailed in [9]. At the same time the state
consistency is ensured because only the primary subview is
able to work in partition scenarios. Thus, this subview is the
only one allowed to generate recovery information, which
will be afterwards used for recovery. For similar reasons,
a node can not start new transactions until it has not been
fully updated.

3 Failure Models

Different papers, as [8, 4] have presented different failure
models that can be adopted in replicated systems. Among
these failure models it can be pointed out the fail-stop and
the crash-recovery with partial amnesia.

The assumed failure model in a replicated system has
a great importance in the way it provides fault tolerance.
Traditionally, most replicated systems have adopted the fail-
stop failure model, because it is the simplest one to manage.
When a replica crashes in these systems, they substitute the
crashed replica by a new one, transferring the whole state to
the new one. But, this option will not work well for repli-
cated systems which manage large amounts of data state,
because will lead to very long transfer periods. Longer pe-
riods for preparing a new wholy active replica, will imply
in the replicated system the following consequences:

• Longer periods with low performance levels for sys-
tems based on active replication. This effect is obvi-
ous for replicated systems which do not allow outdated
replicas to work. But, it is also present for systems
that allow outdated replicas to work, because the rate

1This characteristic prevents the system from working in the starting
phase until a primary subview is reached, and therefore, during this initial
phase, the recovery protocol must not perform any work.

2



of work concluded correctly is degraded for being out-
dated. It must be noticed, that replicated systems based
on passive replication do not suffer this effect.

• Longer periods with decreased fault tolerance support.
This is due because from the fault tolerance point of
view, only fully updated replicas can be used to guar-
antee the correct and consistent state evolution in the
replicated system.

• Higher times of unavailability if the replicated system
does not fullfil the progress condition (i.e. systems
based on primary partitions).

In order to avoid all the above presented problems for
replicated systems which manage large amounts of data
state (i.e. replicated databases), our proposal is to apply
recovery processes in the previously crashed nodes, once
they reconnect, transferring them only the information they
missed. In other words, to use the crash-recovery with par-
tial amnesia failure model.

The problem of this assumption, is that the replicated
system must manage the amnesia problem in order to ensure
that the achieved state in the outdated node, after applying
the recovery process, is consistent. In this scenario, con-
sistent means that the recovered node reaches the replicated
system state. Therefore, the replicated system must know
which is the last consistent state reached by the crashed
node, in order to transfer to it the exact needed informa-
tion, and avoiding the problems of losing some changes or
applying others twice or more.

Following sections detail how the amnesia problem man-
ifests in replicated systems and how it can be managed in a
generic way with a log-based strategy. Subsequently, it will
be detailed the amnesia support that can provide replicated
systems depending on their characteristics.

As previous step, it will be described how the amnesia
phenomenon could arise in these systems in order to apply
the necessary corrective measures.

4 The Amnesia Phenomenon

As described above, the assumed failure model, crash-
recovery with partial amnesia, implies that on reconnections
of crashed nodes, they can not remember exactly which
was their last state before their crash occurrence. In other
words, it can be said that when nodes crash they expect to
have a theoretic last state that can differ from their real last
state due to amnesia. This phenomenon is due to the fact
that nodes have received some messages but their attached
changes have not been committed before the nodes crash
time. So, their recovery processes must take under consid-
eration their respective actual last state before crashing.

In order to solve this problem the node must know pre-
cisely the identity of every committed transaction in its un-
derlying transactional system replica. This is necessary be-
cause it is possible for a transaction expected to be commit-
ted in the system to have not been actually committed in the
underlying transactional system of this replica (e.g. due to
overhead or because the node is being recovered and could
not apply the currently received replication messages).

The amnesia phenomenon can also be manifested in a
different way, when a reconnected node does not remember
the received messages before its crash. The idea is that the
node receives some messages, and the group communica-
tions system assumes that these messages have been deliv-
ered. At this point, if the node crashes before committing
the updates associated to such messages - storing them per-
sistently -, when the node is reconnected it has lost such up-
dates. Messages that the communications system assumes
to be already transferred.

Thus the amnesia problem arises at two different levels:

• Transport level, at this level, it implies that the sys-
tem does not remember which messages have been re-
ceived. In fact, the amnesia implies that received mes-
sages non-persistently stored are lost when the node
crashes, generating a problem when they belong to
transactions that the replicated system has commit-
ted but which have not been already committed in the
crashed node.

• Replication level, the amnesia is manifested here in the
fact that the node “forgets” which were the really com-
mitted transactions.

Depending on the recovery policy used, log-based or
version-based, the information that must be maintained to
solve the amnesia problem differs. Thus, extra information
is needed to be maintained to this particular end, being af-
terwards used in the amnesia recovery process. The next
section provides ways to avoid amnesia problems at recov-
ery time for log-based recovery policies.

5 Log-Based Amnesia Recovery

In the basic considered replicated systems each transac-
tion is only processed in one replica, the replica that serves
the client request, and only its associated updates are broad-
cast among all alive replicas. In this scenario, log-based re-
covery protocols use as recovery information the broadcast
replication messages missed by crashed nodes. So, the solu-
tions provided for log-based protocols must maintain these
messages as long as they are not applied by all replicas.

The amnesia recovery in an outdated node has to be done
before recovering the missed messages lost during its failure

3



period, as it is explained in [11] in order to guarantee the
state consistency.

In section 4 it has been detailed that the amnesia can be
manifested at two different levels: transport and replication.
Therefore, the log-based recovery protocols must manage
the information necessary for performing the recovery in an
adequate way for both levels.

5.1 Transport Level

The amnesia at the transport level implies that received
messages non-persistently stored are lost when the node
crashes. If this occurs, the amnesia recovery could not be
performed using a log-based approach. So the system must
ensure these messages are available for recovery purposes
by storing them in a persistent way.

The simplest, easiest option is that each node manages
its own amnesia recovery information persitently. This stor-
age of received messages must be kept until the respective
owner transaction is either committed or aborted2. More-
over, if the messages must be maintained after its transac-
tion commit, they must be marked in some way to remem-
ber that they have been already applied.

In addition, the permanent storing of a received message
must be performed atomically with the group communica-
tions system message delivery. Under this principle, if the
node is not able to persistently store the message, the group
communication system (GCS) does not consider this mes-
sage as delivered (thus ensuring that the delivery is coupled
with the persistent storage).

Another approach, that we can think about, will consist
in storing persistently messages in their replica senders, but
this option presents several drawbacks. One of them im-
plies that senders must maintain for each sent message a list
of replicas that have acknowledged the commit of this mes-
sage, being only possible to delete the message when all
replicas have acknowledged it. Other important drawback
is that the recovery process only can be performed when all
senders are alive, a condition that can delay a lot of time
the recovery process, situation highly discouraged. In spite
of having several problems which discard its use in many
transactional replicated systems, there are some replicated
systems which their work way fits well with this solution.
This is the case of hot passive on-processing [10] or voting
replication systems [23].

5.2 Replication Level

The amnesia problem relates at the replication level to
the fact that the system can not remember which were the
really committed transactions. Even for those transactions

2i.e. discarding them on transaction aborts, or maintaining them for
committed transactions only when failed nodes exist.

for which the “commit” message was applied, it is possible
for the system to fail during the commit. Thus, the informa-
tion about the success of such commit must be also stored
because it is needed by the recovery amnesia process in or-
der to know which are the messages that must be applied (as
we discussed previously). So, at the replicated system level,
the problem is to know if a “commit” was successfully ap-
plied before the failure or not.

The mechanism for generating this information consists
in maintaining some information about the last committed
transaction for each open connection. Thus, when a trans-
action commit is performed in the replica, the system must
write this information in a single atomic step, as part of the
transaction itself. Thus, on commit success, the system con-
tains the identity of this last committed transaction. After-
wards, when the connection is closed, the entry correspond-
ing to this connection is erased.

Then this generated information is useful in the recovery
process to check if messages marked as not committed have
been really committed. When the node becomes alive again
and starts its amnesia recovery it will check if there are mes-
sages marked as not committed, but its owner transaction is
marked as committed in the replica.

A similar problem arises regarding the state associated
to not committed messages (messages belonging to not yet
committed transactions), since it is lost at the crash instant,
since the replication system is also a transactional system.
Therefore, these messages applied by the replication system
but not committed must be again reapplied.

There are three possible scenarios where messages main-
tained as non-committed belong to a transaction whose
owner connection does not have an entry in the table of
committed transactions:

• The node did not start to apply this connection and its
transactions before the node crash. Then, these mes-
sages must be applied in the amnesia recovery process.

• The connection is closed before committing some of its
related transactions (implying that these transactions
will be aborted) but the node crashes before the system
erases those messages. Thus, all the messages will be
reapplied in the amnesia recovery process but they will
be aborted again as it has happened in the normal work
way.

• The transaction was really committed, the system has
not marked yet its messages as committed, and it has
already deleted its table connection entry. This sce-
nario must be avoided, because it will lead the system
to apply twice a transaction if a recovery process is
performed. So, when the “remove connection” mes-
sage is applied, the removal of the corresponding entry
in the system must be done after the protocol considers
committed the transaction.

4



As a result, the amnesia recovery stage will just consist
in reapplying the messages marked in the log recovery as
“not applied” or “not committed”, first checking against the
replica if they were not really committed.

6 Replicated Systems Characteristics and
Amnesia

Once in the previous section has been described how the
amnesia problem manifests in a replicated system, in this
section it will be described how their specific characteristics
affect the way in which the replicated system must manage
the amnesia problem. The characteristics set considered is:

Characteristics Set
Active, Update Everywhere or Passive Replication

Eager or Lazy Replication
Voting or non-Voting Technique
Constant or Linear Interaction
Communication Guarantees

Table 1. Characteristics Set.

In following subsections are detailed their effects on the
amnesia support.

6.1 Active, Update Everywhere or Pas-
sive Replication

The adoption of an active [22] (AR), update everywhere
[23] (UER) or passive [22] (PR) replication policy will not
have any effect in how the replicated system must manage
the amnesia problem. It is due to the fact that the amne-
sia phenomenon does not depend in how many replicas can
serve client requests, but in how the changes are spread and
stored at each replica.

6.2 Eager or Lazy Replication

The selection between eager (ER) or lazy (LR) replica-
tion [13] has a great effect in the amnesia phenomenon and
its management.

In fact there are some configurations in the eager ap-
proach that are managing indirectly the amnesia phe-
nomenon. This is the case of eager passive replication sys-
tems, also known as hot passive replication in [21], based on
on-processing synchronization [10]. These systems block
the client answer until the primary receives the process
acknowledge from all secondary replicas. Therefore, the
replicated system work way controls which slaves have
committed which transactions, providing the necessary in-
formation for managing the amnesia problem at the replica-
tion level. The other eager passive replication techniques,

on-delivery and on-reception synchrony [10] will not pro-
vide this intrinsic amnesia support, being necessary in these
cases to adopt our amnesia support proposal.

Another case is eager update everywhere replication pro-
tocols as [18] which commit a transaction once all active
replicas have locally committed it. This work way also pro-
vides the needed information to control the amnesia phe-
nomenon at the replication level.

But not all eager solutions provide this intrinsic amne-
sia replication level support, only those whose transaction
replication work includes the processing in all alive repli-
cas into the transaction boundaries. Eager solutions that do
not provide this behavior must adopt a system similar to our
proposal either for replication and transport level.

This is the case of active replication protocols, which
always work in an eager way. When these active replica-
tion protocols are based on total order broadcast they rely
on a fully deterministic transactions execution as it is com-
mented in [22]. Therefore, they do not provide a support for
amnesia, making necessary to add an extra support.

The lazy replication approaches need always to adopt our
amnesia support proposals or similar ones in order to sup-
port our assumed failure model. In these solutions, their
work way does not provide the information needed for pro-
viding the amnesia support.

Anyway, it must be noticed that from a recovery point
of view using a lazy replication technique will have a dis-
ruptive behavior in regard to the replicated consistency state
because it will not be guaranteed at any time that all the in-
formation needed to reach the last consistent state in the sys-
tem is available. Therefore, it is not ensured the success of
these recovery processes. In fact, a priory some lazy repli-
cation protocols have had to implement some eager replica-
tion level to provide fault tolerance as it does [16].

Only lazy hot passive replicated systems, based on asyn-
chronous and reliable communication, which propagate
changes before answering to the client can either provide
amnesia support using our amnesia support proposal, and
ensure the replicated consistency correctness. But in order
to provide this support, the client must remember which re-
quests have not been already answered.

6.3 Voting or non-Voting technique

The use of a replicated system based on a voting termi-
nation technique (VT) [23] can provide to the recovery pro-
tocol information if a node has not committed a transaction
before its failure, because the system needs to know the de-
cisions adopted in all nodes. Thus, its use provides informa-
tion that is necessary for overcoming the amnesia problem
implying a partial implementation of our proposal. Whereas
if a non-voting technique (NVT) is adopted the replicated
system will have to adopt the whole system proposed in this

5



work.

6.4 Constant or Linear Interaction

The use of constant (CI) or linear (LI) interaction [23]
in the replication protocols will not have great effect on the
amnesia level support.

At this point it only must be remarked that the adoption
of a linear replication approach will difficult the transaction
messages management because the messages belonging to
a transanction can be spread among several views, and they
can also be interleaved with the messages owned by other
transactions, forcing to persist messages belonging to non
yet committed transactions with our approach. Obviously
this problem only appears when the system adopts a log-
based recovery strategy as it is commented in [11].

6.5 Communication Guarantees

Until this moment, it has been considered that all repli-
cated systems use a total order broadcast (TOB) for propa-
gating changes3, with virtual synchrony [4, 7]. Therefore it
is ensured that all replicas have delivered the same sequence
of messages before a membership change occurs.

But what does it happen when we try to relax these com-
munication guarantees? Will it affect the amnesia problem
and the way it must be managed? In the following para-
graphs we pretend to evaluate it.

First of all, we will consider communication primitives
which provide reliable communication but which allow dif-
ferent delivery orders in different replicas, as it occurs when
causal or FIFO (R-FIFO) delivery orders are used. The
problem of these communication configurations is that they
do not guarantee, in most cases, a consistent replicated state,
allowing diverging state evolutions in different replicas, sit-
uation that can not be accepted. Only the intrinsic character-
istics of some replicated systems allow to use more relaxed
delivery orders without damaging the replicated consistent
state. This is the case of PR (also known in the literature as
primary copy systems) where R-FIFO is enough to guaran-
tee the replicated state consistency, because in these systems
there is only one sender. These relaxed orders can also be
applied in AR or UER if they use commutative updates [13].
In these cases, where relaxing the total order delivery does
not affect badly the replicated consistent state correctness
our amnesia support proposal can be applied.

Another possible communications relaxation should be
to use non-reliable communications, but under these condi-
tions it is impossible to build any kind of fault tolerant sys-
tem, because there is no guarantee about which messages
have been received by which replicas. Thus, these systems
must use a protocol which provides reliability. Therefore,

3In passive replicated systems a FIFO order is enough.

the study of non-reliable communication primitives must
not be considered.

7 Overhead

After detailing how different replication characteristics
can affect the amnesia support in a transactional replicated
system, we analyse the overhead introduced for providing
amnesia support, detailing first the basic processing time
(BPT) and after the processing time supporting amnesia
(PTSA). Both processing times will be expressed for each
propagated transaction in terms of spread time (st), persist-
ing time (pt) and processing time (Pt).

The st depends on: the communication guarantees pro-
vided, messages number to spread for transaction and the
message size. In regard to the communications, we con-
sider two possibilities: TOB for UER and R-FIFO for PR.
For TOB we assume the fixed sequencer in the broadcast-
broadcast (BB) variant [12] implementation, which uses two
reliable broadcasts for message propagation. On the other
hand, the R-FIFO as it is considered for PR can be imple-
mented using only one reliable broadcast for message prop-
agation because there is only one sender. Then, if α is the
cost of a reliable broadcast, the TOB has a cost of 2α for
spreading a message while the R-FIFO cost is α.

For CI replication protocols, we will consider that only
one message is broadcast per transaction, while LI protocols
spread as messages as update operations contains the trans-
action, n. In this context, message size (S) is important
because some GCS have a maximum message size bound
to spread, SM . Thus, messages greater than SM must be
spread sending d S

SM

e messages. That can occur in CI proto-
cols because they transfer the resulting transaction writeset,
while messages in LI protocols are always smaller because
they only transfer one update operation.

The message persisting time is expressed as β +γ(S/k),
where β is the upper bound time for write disk accesses,
γ is the storing time of a block size message k, and S is
the message size. It is considered that only one write disk
access is needed for message. Then, the pt in CI protocols
where only one message is broadcast is β + γ(S/k), while
in LI protocols is n(β + γ), being n the number of update
operations and assuming that their message size are always
smaller than k.

For Pt, we consider the π value which depends on the
replication system load and in the consistency provided by
the replication protocol. Moreover, in CI protocols it will
depend on the message size to apply (writeset) while on LI
protocols will depend on the number of update operations
and their complexity. Thus π is very difficult to model, any-
way we consider that any transaction always fullfill the rule
Pt > pt.

Several observations must be made for table 2. The

6



Configuration BPT PTSA
C1 - UER, ER, CI,
NVT and TOB

(d S

SM

e + 1)α (d S

SM

e+1)α+

β + γ S

k

C2 - UER, ER, LI,
NVT and TOB

2nα n(2α + β + γ)

C3 - UER, ER, CI, VT
and TOB

(d S

SM

e+2)α+
π

(d S

SM

e+2)α+
π

C4 - PR (hot passive
on-processing), ER,
CI, and R-FIFO

(d S

SM

e+1)α+
π

(d S

SM

e+1)α+
π

C5 - PR (hot passive
asynchronous), ER,
CI, and R-FIFO

d S

SM

eα d S

SM

eα + β +

γ S

k

Table 2. Processing Times.

first one is that replication configurations which perform the
transaction processing as core part of their propagation pro-
cess, as C3 and C4, discard pt due to the rule Pt > pt.
Therefore, π hides the β + γ(S/k) value. Another consid-
eration is that all configurations perform the message per-
sistency process as an atomic step in the delivery process.

From table 2 can be concluded that VT configurations
will not have any overhead for supporting amnesia, but from
the beginning they have a BPT higher than the others, while
the others present an overhead which depends on the per-
sisting time, pt. Overhead which increases with the mes-
sage size, S, in CI and the number of messages, n, in LI.

Another conclusion observed is that the overhead intro-
duced for R-FIFO configurations is higher than for TOB
configurations in percentage terms.

At this point it must be remarked the difficulty to com-
pare CI configurations with the LI configuration. This is
because the firsts depend on the size of the writeset to prop-
agate, persist and/or apply, while the second depends on the
number of update operations to apply and their complex-
ity, depending then on the transactions characteristics. In
a generic way, it can be said that if a transaction contains
a lot of update operations but changes few data items the
CI configuration will introduce less overhead. Contrarily, if
the transaction has few update operations but changes a lot
of data items the LI configuration will introduce less over-
head. Thus, only when in our transactional system one of
these transaction types predominate can be adopted accu-
rately the configuration that best fits our necessities.

Anyway it must be pointed out that providing amnesia
support can only alter the original order cost for the LI in
regard to the others, depending on the transaction charac-
teristics.

8 Related work

A wide range of proposals for solving the recovery prob-
lem [3] have been presented in the literature. Traditionally,
among these recovery protocols, the ones oriented for repli-
cated processes have adopted the fail-stop failure model,
as [4]. In these cases, they transfer the whole data state
to new or “reconnected” nodes, a good approach for sys-
tems with few data state. Whereas, for systems which man-
age large data amounts as, replicated databases, it has been
largely recommended the crash recovery as it is proposed
in [19, 6, 5, 1, 17] in order to minimize the recovery infor-
mation to transfer. Few protocols as [20] have adopted the
fail-stop failure model for large data state scenarios.

Among these last recovery protocols, some of them as
[19, 6, 1] are version-based, while others as [19, 5] are
log-based. First ones, which only transfer changed data,
are typically useful for long-term outages whilst the lat-
ter, which send lost messages, present better performance
for recovering short-term failures. Therefore, combining a
version-based technique with a log-based one to construct
a recovery framework has been proposed in several works
as [19, 5] to improve the recovery features, choosing the
recovery strategy that presents a lower cost each time an
outdated node is detected.

Thus all these recovery protocols that have adopted the
crash-recovery with partial amnesia failure model have to
solve the amnesia problem. In fact, [5] proposes a solution
for the amnesia phenomenon in log-based strategies based
on logging received messages. This protocol is focused on
replicated systems with the following characteristics: up-
date everywhere, eager and using total order delivery.

In [17] it is presented a different way to deal with the am-
nesia problem in similar scenarios. In this paper the authors
mix checkpointing with message transfer, in other words,
they combine as recovery information to transfer a snap-
shot of the data state and the needed messages from the
snapshot instant point. The combination of these two tech-
niques allows the protocol to overcome the amnesia prob-
lem. The problem of this solution depends on the way in
which the checkpoint process is performed, because if the
whole data state is transferred the benefits of adopting the
crash-recovery failure model are lost.

Other protocols as [6] avoid the amnesia problem in a
version-based strategy. But the first thing to remark in this
strategy is that the amnesia at the transport level must not be
managed, because its protocols do not use messages to per-
form the recovery processes. In this case, the recovery pro-
cesses tranfer to the outdated nodes the changed state from
their crash time. Therefore, this strategy only needs to man-
age the information associated to the amnesia at the repli-
cation level. And the solution provided for the log-based
amnesia recovery can also be applied in this case, without

7



the necessity of managing the messages. But it must be
noticed that transferring only the state changed during the
views where the node was failed will not include the neces-
sary information in some cases. This problem is avoided if
the replicated work uses a voting technique or if the infor-
mation maintained to check the version is a version number,
timestamping or the identifier of the last transaction which
updated the data item.

9 Conclusions

In this paper, we detail how the crash-recovery with par-
tial amnesia failure model presents some advantages from a
recovery point of view for transactional replicated systems
which manage large amounts of data state with respect to
the most extended one, the fail-stop. And also, we explain
its provided advantages for constructing fault tolerant sys-
tems under scenarios with huge data amounts.

But, it is noticed that the assumption of this failure model
implies to deal with the amnesia problem. Then, this work
analyzes how this phenomenon manifests at two different
levels in replicated systems build on top of a total order
broadcast communication system. And subsequently it is
detailed how these systems can manage it, avoiding its re-
lated problems for log-based recovery strategies.

It is also studied in this paper, starting from how it is pro-
vided the amnesia support in our initial replicated system
configuration, how the amnesia can be supported in other
replicated systems depending on their characteristics.

Finally, it is performed an analysis of the overhead intro-
duced for providing amnesia support in different replicated
system configurations using a log-based recovery strategy.

References

[1] J. E. Armendáriz, F. D. Muñoz, H. Decker, J. R. Juárez, and
J. R. G. de Mendı́vil. A protocol for reconciling recovery
and high-availability in replicated databases. 21st Interna-
tional Symposium on Computer Information Sciences, 2006.

[2] O. Babaoǧlu, A. Bartoli, and G. Dini. Enriched view
synchrony: A programming paradigm for partitionable
asynchronous distributed systems. IEEE Trans. Comput.,
46(6):642–658, 1997.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison
Wesley, Reading, MA, EE.UU., 1987.

[4] K. P. Birman and R. V. Renesse. Reliable Distributed Com-
puting with the ISIS Toolkit. IEEE Computer Society Press,
Los Alamitos, CA, USA, 1993.

[5] F. Castro, J. Esparza, M. Ruiz, L. Irún, H. Decker, and
F. Muñoz. CLOB: Communication support for efficient
replicated database recovery. In 13th Euromicro PDP, pages
314–321, Lugano, Sw, 2005. IEEE Computer Society.

[6] F. Castro, L. Irún, F. Garcı́a, and F. Muñoz. FOBr: A
version-based recovery protocol for replicated databases. In
13th Euromicro PDP, pages 306–313, Lugano, Sw, 2005.
IEEE Computer Society.

[7] G. V. Chockler, I. Keidar, and R. Vitenberg. Group com-
munication specifications: A comprehensive study. ACM
Computing Surveys, 4(33):1–43, 2001.

[8] F. Cristian. Understanding fault-tolerant distributed systems.
Communications of the ACM, 34(2):56–78, 1991.

[9] R. de Juan-Marı́n. (n/2+1) alive nodes progress condi-
tion. In Sixth European Dependable Computing Conference,
EDCC-6, 2006.

[10] R. de Juan-Marı́n, H. Decker, and F. D. Muñoz-Escoı́. An
extended hot passive replication classification. In 2nd In-
ternational Conference on Availability, Reliability and Se-
curity. IEEE, 2007.

[11] R. de Juan-Marı́n, L. Irún-Briz, and F. D. Muñoz-Escoı́. Re-
covery strategies for linear replication. In ISPA, pages 710–
723, 2006.

[12] X. Défago, A. Schiper, and P. Urbán. Total order broad-
cast and multicast algorithms: Taxonomy and survey. ACM
Comput. Surv., 36(4):372–421, 2004.

[13] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. In ACM SIGMOD International
Conference on Management of Data, pages 173–182, 1996.

[14] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and
related problems. In S. Mullender, editor, Distributed Sys-
tems, chapter 5, pages 97–145. ACM Press, 2nd edition,
1993.

[15] J. Holliday. Replicated database recovery using multicast
communication. In NCA, pages 104–107. IEEE Computer
Society, 2001.

[16] L. Irún-Briz. Implementable Models for Replicated and
Fault-Tolerant Geographically Distributed DataBases. Con-
sistency Management for GlobData. PhD thesis, Polytech-
nic University of Valencia, 2003.

[17] R. Jiménez-Peris, M. Patiño-Martı́nez, and G. Alonso. Non-
intrusive, parallel recovery of replicated data. In SRDS,
pages 150–159. IEEE Computer Society, 2002.

[18] B. Kemme and G. Alonso. A new approach to develop-
ing and implementing eager database replication protocols.
ACM Trans. Database Syst., 25(3):333–379, 2000.

[19] B. Kemme, A. Bartoli, and O. Babaoǧlu. Online reconfigu-
ration in replicated databases based on group communica-
tion. In Intl.Conf.on Dependable Systems and Networks,
pages 117–130, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[20] E. Lau and S. Madden. An integrated approach to recovery
and high availability in an updatable, distributed data ware-
house. In VLDB, pages 703–714, 2006.

[21] A. J. Wellings and A. Burns. Programming replicated sys-
tems in ada 95. The Computer Journal, 39(5):361-373,
1996.

[22] M. Wiesmann and A. Schiper. Comparison of database
replication techniques based on total order broadcast. IEEE
Trans. Knowl. Data Eng., 17(4):551–566, 2005.

[23] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and
G. Alonso. Database replication techniques: A three pa-
rameter classification. In SRDS, pages 206–215, 2000.

8


