UNIVERSITAT
POLITECNICA
DE VALENCIA

Consistency models in modern
distributed systems. An
approach to Eventual
Consistency.

Author: Leticia Pascual Miret
Director: Francesc Daniel Munoz Escoi

Master’s Degree in Parallel and Distributed Computing
09, 2014

Acknowledgments

I would like to thank the enormous patience of my supervisor, Francesc
Daniel Munoz Escoi, and all those people who have been by my side for all
these years and for those that are to come. I am not able to mention all of
them. It feels fantastic to have a special family where there was no one.

To those who have been standing by my side in the darkest hours.
To those who have believed in me even in the most terrible situation.
To those who are not afraid of living.

Leticia Pascual Miret

11

LPM-IUMTI-UPV

Contents

1 Introduction 3
1.1 CAP Theorem 4
1.2 Consequences of the CAP Theorem 5
1.3 Outline. 7

2 Replication 9
2.1 Introduction 9
2.2 Distributed Systems. An explanation for features and charac-

teristics L Lo 10
2.2.1 Synchronisation 0L 11
2.2.2 Fault-Tolerance 13
2.2.3 Consistency in replicated systems 14
2.2.4 Connectivity loss 15
2.2.5 Dependability and scalability 17
2.3 Diffusion Communication Protocols 18
2.3.1 Classification, 18
2.4 Replication models 20
2.4.1 Passive replication model, 20
2.4.2 Active replication model 21
2.4.3 Semi-passive and semi-active replication models 22
2.5 Conclusions 23

3 Data-centric consistency models 25

3.1 Introduction 26
3.1.1 Strict consistencyo 27
3.1.2 Sequential consistency 29
3.1.3 Causal consistency 31
3.1.4 FIFO consistency 32
3.1.5 Cache consistency 33
3.1.6 Processor consistency 34

111

3.1.7 Other consistency models 35

3.2 Unified Theories of Shared Memory Consistency 36
3.3 Considering implementation aspects 38
3.4 Conclusions 40

4 User-centric consistency models 43
4.1 Introduction 43
4.2 Session concept 45
4.3 Session or read-write guarantees 46
4.3.1 Read Your Writes 46

4.3.2 Monotonic Reads oL 47

4.3.3 Writes Follow Reads 47

4.3.4 Monotonic Writes 48

4.4 Conclusions 48

5 Eventual Consistency 51
5.1 Transparency oo 52
5.2 Definitions of Eventual Consistency 52
5.2.1 Eventual Consistency as a consistency model 52

5.2.2 Eventual Consistency and a formal definition 57

5.3 Implementation and techniques 57
54 Conclusions 58

6 Conclusions 61

1v LPM-IUMTI-UPV

2.1
2.2

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8

3.9

List of Figures

Passive replication.
Active replication.

Strict consistency model.
Linearisable consistency model.
An example for a sequential execution in a system with this
consistency model.o
A causal execution in a system with an example of two con-
current writes. L L Lo
A FIFO or PRAM execution.
A correct cache execution without the blocked processes.

A processor consistent execution.
A processor consistent execution following Ahamad et al.
[1993] definition.
The complete lattice of consistency models.

List of Figures

2 LPM-IUMTI-UPV

CHAPTER

1

Introduction

“Begin at the beginning,” the King said
gravely, “and go on till you come to the end:
then stop.”

— Lewis Carroll, Alice in Wonderland

Eventual Consistency has been considered the master solution to solve the
famous CAP theorem [Gilbert and Lynch, 2002]. CAP Theorem has been an
enlightening summary of what has been told for many years through a lot
of researches, that is the impossibility of having a coherent and consistent
replicated data in the presence of network partitions in a highly available
system. Many publications have been presented and defended about how
to implement, what is, and how to define eventual consistency. A common
known definition is like the following one: “In the absence of updates, in a
quiescent state of the system where all updates have been propagated, all
reads will return the same value or all the replicas will share the same state”.
It is also called convergence property as we can deduce from the definition
that all the copies of the system will eventually have the same value (or
the users will have the perception that there is no modification unless they
update some value). However, at the end, how much do we know about its
definition, the mechanisms used to achieve it or, more generally, how can
we define it formally? These and other aspects of this concept are the main
focus of this work. To remark the relevance of being a very desired property
present in almost all modern distributed systems that are also called the
cloud. Due to the performance improvement, there is also a design change
in not so big distributed systems, like a web service or a small client-server
application.

The main goal of this work is to explain the relevance of eventual consis-
tency in current distributed systems. How the need of extreme scaling with-
out affecting throughput of replicated systems has changed the paradigm of
their design, behaviour and implementation. To redefine eventual consistency
as the key to a perfect combination for availability, efficiency and scalability.

Chapter 1. Introduction

To this aim, it has been originated a study of the main publications about
eventual consistency. Most of the known definitions have been included in
this text, comparing differences and similarities among them, leading us to
the conclusion that it is not a classical, data or client centric, consistency
model.

The evolution of this concept has been born when data replication is
used to increase availability and system users, and it took more attention
from the distributed system designers since they have seen it as the key
solution, combining it with how we let the users perceive the data and rec-
onciliation techniques. In this way, we obtain a system that is scalable and
highly available without sacrificing data consistency convergence by weaken-
ing consistency conditions. This property, data that converge, seems easily
implementable form scratch. Truth is, which kind of consistency level do
we need in our system to guarantee convergence? Which mechanisms, tech-
niques and algorithms will help us to this aim? Which consistency models
include data convergence? At this point, we can suspect that eventual con-
sistency or data convergence is more about a liveness property of the system
than a regular consistency model (concept explained in section 2.2.3, and, in
detail in chapter 3). The answer to these questions an more will be found
in the following sections and chapters. But before, a little bit from the CAP
theorem and its consequences.

1.1 CAP Theorem

Given a distributed system, it is impossible to guarantee the three following
properties:

e Consistency (C): All nodes share the same states, that is, they all
have the same data. In an informal manner, a system is consistent if
a write is successful, all the components of the system can read the new
value.

e Awailability (A): The system remains operative to take care of ev-
ery client request, managing it and answering it. Furthermore, it also
means that the system is still awake even if a node fails (or crashes).

e Partition Tolerance (P): The system keeps attending client requests
even though it has been divided into at least two different parts, also
called partition, that cannot communicate between them.

These three guarantees or properties are desirable for a correct behaviour
of distributed applications. What the theorem stands is that it is not possible

4: LPM-IUMTI-UPV

1.2. Consequences of the CAP Theorem

to achieve or meet these three guarantees at a time in any possible system.
Our application can be consistent (C) and available (A) but not tolerant to
partitions. Or it can be consistent (C) and tolerant to partitions (P) but
not available. Or it can be tolerant to partitions (P) and available (A), but
not consistent (C). In any case, one of the three properties must be relaxed.
And since the requirements of high availability and high scalability, it is just
simpler to sacrifice consistency by being less restrictive about the data access,
the data modification and the concurrent access.

This first conjecture was presented in the PODC congress in 2000 by Eric
Brewer [Brewer, 2000] and demonstrated by Gilbert and Lynch [2002], but
other authors like Davidson et al. [1985] many years before, were describing
the same problematic situations and the same solutions to confront them.
In particular, in the last citation, two different ways of solving the partition
situation in a system are presented. One group of approaches were called
pessimistic (to achieve consistency do not let the system to progress) and
the others, optimistic or lazy (allow progress no matter what the client sees;
eventually, we will be able to merge the partition states and reach a consistent
state).

In Terry et al. [1994] this very same situation is solved using what the
author called eventual consistency: “Practical systems generally desire even-
tual consistency in which servers converge towards identical database copies
in the absence of updates. It relies on two properties: total propagation and
consistent ordering.”. In chapter 5 we will pay more attention to this defini-
tion and how it has varied among years and systems. Gray et al. [1996] calls
it convergence property, inspired from Kawell et al. [1988], who names it as
eventual consistency. It seems that is the very first time this name is used.
We have not found any former publication where the name appears.

If we read for the very first time the CAP theorem, we could misinterpret
it and we could reason that is a negative thing that it is impossible to meet
the three desirable guarantees in a distributed system. However, in fact, is a
valuable consideration to know it in advance since we can manage to design
our system considering the limitations that the applications can present and
not falling into mistakes or inconveniences that can be predicted in advance
and being able to optimize for a particular situation or specific application.

1.2 Consequences of the CAP Theorem

The first obvious consequence of CAP Theorem is that we can only choose
two out of three properties or guarantees to be accomplished. The question
now is which one should be left out. Well, the answer is also quite trivial:

LPM-IUMTI-UPV 5

Chapter 1. Introduction

the one that less affects the regular behaviour that we want to have in the
system. However, it is not necessary to give up radically to the third. With
just some few relaxations to the rule usually is enough. The most common
option is to get rid of the C and keep A and P. Thus, we would obtain a
BASE system (Basically Available, Soft-state, Eventual consistency) and,
if our system works in a transactional environment, some ACID (Atomicity,
Consistency, Isolation and Durability) properties disappear. We can say that
ACID systems are more focused in keeping a highly consistent system and
BASE focuses more in a highly available one. Although, systems like Pnuts
[Cooper et al., 2008] prefer to forfeit availability in certain cases. So, the
concept of transaction disappears and the concept of session that works with
simple operations, write and read, makes more sense and it becomes the
environment that the user needs to communicate with some systems. These
strategies among other concepts will be explained in chapter 4.

Under CAP circumstances systems that are wanted to be highly available,
highly scalable and cover a wide area have a considerable good option in
masking an incorrect behaviour to the users, considering that users can be
people and other applications or services. Henceforth nodes and load can
be increased and supported quite successfully. It is trivial to reason that
when the higher the number of nodes becomes, the higher the probability of
a failure or network partition increases, despite the nodes can be in the same
server farm. The most famous systems that appeared and took this option
are the NoSQL databases.

In conclusion, the situation is depicted as follows. We desire a highly avail-
able system which can be highly scalable so it can serve to a growing number
of clients or users. The aim is to continue adding nodes while keeping the
service working as the load requires, without having too much performance
withdrawal. However, data constraints of classical systems make too difficult
to manage this new situation and involves a dramatically lowering of system
capabilities and the need of synchronisation becomes a heavy task to achieve
that increases latency in a non convenient level. Could we imagine a 2PC
with thousands of machines implied? The solution to this situation is to
relieve all the possible constraints related to data, including synchronisation.
The synchronisation is delayed to a near future and the responsibility relies
in other parts of the system, like the user application, the broadcast algo-
rithm, reconciliation techniques, new data structures, etc. We can envision
with what is said that to programming with these new features will be more
complicated.

It is interesting to point out that CAP Theorem is a set of ideas that
researchers and system designers had since replication appeared. But the
task of Brewer was to give it the relevance that it needed. Knowing this fact,

6 LPM-IUMTI-UPV

1.3. Outline

now it is possible to start designing a new distributed system with other
scheme in mind having these new features and their implications in mind.
Thus, we have a direct consequence of the evident impact in design and, as
stated before, in implementation. System nodes will have enough information
to make their own decisions without asking for further information to other
pairs. There is now also a focus on user behaviour to adapt the application to
it and not the other way around. Offline working is allowed in these systems
with more relaxed conditions. The application may inform the user about
this offline mode or it could be made transparently, depending on the nature
of the service, the state can be updated.

1.3 Outline

The text is organised as follows. Firstly, in chapter 2 we will explain some
basic concepts of distributed systems, such as replication, consistency, group
communication, system interconnection, etc. Always focusing in understand-
ing how consistency arises from replication and the need of a system to be
highly scalable. With this knowledge in mind, we will explain in depth the
main consistency models and a brief way of implementing them. In chapter 3
we will explain data-centric consistency models plus a formalism to describe
them, and in chapter 4 client-centric ones. Both groups are complementary,
that is, we can use combinations of various models for a system. After having
all consistency models defined, we can envision in chapter 5 what eventual
consistency is and which techniques are necessary to implement in order to
achieve it. Finally, in chapter 6 a summary will be presented as well as
the main reasons why eventual consistency is a desired condition in current
distributed systems.

LPM-IUMTI-UPV 7

CHAPTER

2

Replication

“The key to the design of fault-tolerant systems

is the provision of redundancy.”
— Kopetz and Verissimo, Real Time and
Dependability Concepts

2.1 Introduction

The term redundancy refers to those extra resources in a system that are
not needed in a perfect world ([Kopetz and Verissimo, 1993]). Replication
is a redundancy technique that consists in keeping more than one copy of a
component or data in an application. It increases availability and also helps
to balance the load between components leading to a better performance.
Caching is considered a special form of replication usually, closer to the client
side. Nevertheless, it also has a high cost. It is necessary to check periodically
the state of each replica, to have a mechanism to incorporate new nodes, to
handle probable failure of the existing ones and to propagate the updates
to all the replicas while offering a consistent data view and interaction with
them.
For all these reasons several protocols must be designed to:

e Manage consistency in a proper manner. This implies update propa-
gation and filtering or blocking of certain accesses.

e Replicas addition to the system. It could need to pause the opera-
tions that are taking place in that precise moment. This affects to
availability.

e Recovery of lost nodes or partition of the system into two or more
subsystems due to network failure. The protocols designed for these
aims should not affect to availability, but they could.

Chapter 2. Replication

We understand a Distributed System as a collection of independent com-
puters or processes that are able to provide a single-system and coherent
(consistent) image [Tanenbaum and van Steen, 2007]. A system that achieves
these goals, to act like a single machine, is said to be transparent. These not
necessary equal computers cooperate like if the system was composed by one
single machine, being able to collaborate for a common purpose. As a result,
the system has to be able to achieve its goal and be highly available to offer
a quality of service for the users. In other words, any component of a Dis-
tributed System should be able to stay up to attend client’s requests at any
moment. A failure should not cause the entire system to go down. In this
scenario, it is trivial to think about redundancy as a solution to decrease the
probability of the system to stop. Protocols for replication and recovery of
the machines will be created and developed to ensure fault tolerance. Scal-
ability, to add more nodes to the system to offer more service quality and
quantity, becomes a desirable feature if the applications grow in use rate. All
of this, while offering a coherent enough image of the data for the users. With
these ingredients we can build a reliable, available and dependable system.

In the first section we will explain these characteristics (synchronisation,
fault tolerance, consistency, dependability...) a bit deeper for a better under-
standing of the work. After that, we will explain the mechanisms needed for
the implementation of a replicated system, such as Group Member and Com-
munication Services and protocols for replication and node recovery. Finally,
the main four replication models will be described.

In this text, we will use the concept of node as a synonym for machine,
computer or process. Definitely, a component of the distributed system. This
naming has its origin in graph theory used to represent a distributed system.

2.2 Distributed Systems. An explanation for
features and characteristics

In this section we will explain all the main characteristics that arise when
defining a Distributed System. First of all, an explanation for the need of a
degree of synchronisation. Secondly, and agreeing with Lamport’s definition
of Distributed systems, we present a small summary of Fault-Tolerance. Af-
ter that, and since if we replicate the data status, we have written a brief
definition of Consistency. This concept will be widely approached through
all the text, but a previous definition will clarify our ideas presented here.
Following these, we will explain what happens when a node or some subset
of the system is isolated from the rest of the components due to problems in

10 LPM-IUMTI-UPV

2.2. Distributed Systems. An explanation for features and characteristics

the communication. To complete this introductory section, we will explain
the concepts of dependability and scalability and why are so important to be
considered while designing the system.

2.2.1 Synchronisation

Basically, there are two poles to define synchronisation degree: synchronous
and asynchronous. This notion relates to the time that takes a clock ticking
of a node and its partners and, also, to the time that takes a message to be
delivered, time of living nodes and the time of their communication. If the
system is more strict about this timing by adding boundaries, it will become
more synchronous. If the system is less restrictive about it, the system will
be closer to an asynchronous one. Depending on what we need in our system,
we will design it to be less or more synchronous [Schneider, 1993]. Formally:

Synchronous : A Distributed System is considered synchronous, firstly, if
there is a maximum in the speed difference for each element of the
system (we can think that having this property as something similar to
a synchronised clock among all the processes) and, secondly, if there is
a bound in transmission time in the communication between any two
processes of the system.

An ideal synchronous model would be one where all the nodes share the
same clock or all their clocks advance at the same time. This is the maximum
level of synchronisation, which is impossible to obtain. In such a system, all
algorithms would be very easy to solve and implement since we would be able
to know the composition of the system, when any message would arrive to its
destination, when a failure would happen (more information about failures
will be explained in subsection 2.2.2). Approximations to this model are very
difficult to implement and maintain. For instance, a problem hard to face
is the addition of extra nodes to the system. It will turn more effortful to
synchronise a larger number of nodes for obvious reasons, the size, the latency
and the number of the messages required to keep the synchronisation degree
will explode with the number of nodes, and the same with the probability of
any kind of system failures. Thus, we can start to envision that the growing
of the system is incompatible with a strong synchronisation degree.

Asynchronous : A Distributed System is considered asynchronous if none
of the previous conditions stands for the system. In other words, we do
not know precisely if a message will reach its destination or not. The
system is considered partially synchronous if it attains one of the two
properties.

LPM-IUMTI-UPV]_1

Chapter 2. Replication

Many problems are not solvable in asynchronous distributed systems since
we would not be able to know when messages arrive and, besides, we would
not know either how the nodes would progress. For instance, to know the
full status of the system, also called snapshot. However, these systems are
easier to implement and design. In addition, it is less complicated to add
nodes to the system. The more asynchronous the system is, the better scal-
ability (see subsection 2.2.5 for a definition) performance shows. However,
synchronisation is not the only factor that affects scalability, as we will see.

Virtual Synchronisation

Other kind of synchronisation approximation is virtual synchronisation. This
type is based on the definition of view. It is widely used in high available sys-
tems that use membership communication services like Isis ([Birman, 1986])
and Totem ([Amir et al., 1995]). A view is the output of a membership ser-
vice and it consists of a list of the components or nodes that belong to a given
group or system. Each time the configuration of the group changes by adding
or removing nodes, the membership service will inform to all the other com-
ponents with the new list or view of the group and the origin of the change.
This is called a view change. In this context, we create a virtual time barrier
for all the members. All the components of the group are synchronized once
the view is delivered and the new configuration of the group, which nodes
are up and down, is known. It is important that all the broadcast messages
and the notifications of the view changes are carried out in the same order
in all the members of the group.

With this condition, the virtual synchrony property says: “If processes p
and q install the same new view V in the same previous view V', then any
message received by p in V' is also received by q in V”’. This property stays
that all the processes alive in some view change agree on the set of messages
sent and received until that moment. Provided this condition, we are able
to manage properly system failures, like crashes, since all the nodes have all
the information of all the group and messages delivered. With this scenario
is quite easy to achieve a strong level of data consistency (see chapter 3).
All the members know who has crashed and who has been added to the
group resulting in an easy method to control all the information of the sys-
tem. Nothing is said about the problems that cause failures but it provides
an elegant, simple and correct manner to handle even sequential, causal or
FIFO consistencies. Still at all, virtual synchronisation is really heavy to
implement highly scalable systems due to the needing of a membership ser-
vice and the periodical checking of every node in the group. In addition,
the requirement of consensus for each change in the system. For a deeper

12 LPM-IUMTI-UPV

2.2. Distributed Systems. An explanation for features and characteristics

knowledge about virtual synchronisation, the survey Chockler et al. [2001]
makes a very good description of it, among other things like membership
service and communication.

2.2.2 Fault-Tolerance

From Kopetz and Verissimo [1993] we take the difference among failure, fault
and error. If the system behaves in a different manner that it was supposed
to, we say that the system has failed at some point in time. That is, a failure.
Depending on its characteristics, it can be classified in function of its nature
(value or timing), perception (consistent or inconsistent), effect (benign or
malign) and oftenness (single or repeated). Lots of these failures are caused
by internal incorrect state of the computer, for instance a wrong data or
value in a register. This is called an error and lasts for a given slot of time.
The cause of this error is what we call fault. In a similar manner, faults
can be classified depending on their nature (chance or intentional), cause
(physical or design), boundaries (internal or external), origin (development
or operation) and persistence (temporary or permanent).

The goal of a fault-tolerant system is to detect and repair or, at least,
mask errors before they show up as failures in the behaviour of the system.
Redundancy is the key for such systems. Like replication, to repeat sending
the same message until it is received, channel duplication, etc. At the very
least, the system has to be able to show the user that nothing important is
happening. When a system behaves masking errors to the users we say that
it is fault tolerant transparent.

A classification of failures by Schneider [1993]:

e Failstop. A processor fails by halting. Once it halts, the processor
remains in that state. The fact that a processor has failed is detectable
by other processors.

e Crash. A processor fails by halting. Once it halts, the processor
remains in that state. The fact that a processor has failed may not be
detectable by other processors.

e Crash+Link. A processor fails by halting. Once it halts, the processor
remains in that state. A link fails by losing some messages, but does
not delay, duplicate or corrupt messages.

e Receive Omission. A processor fails by receiving only a subset of the
messages that have been sent to it or by halting and remaining halted.

LPM-IUMTI-UPV]_3

Chapter 2. Replication

e Send Omission. A processor fails by transmitting only a subset of the
messages that it actually attempts to send or by halting and remaining

halted.

e General Omission. A processor fails by receiving only a subset of
the messages that have been sent to it, by transmitting only a subset
of the messages that it actually attempts to send, and/or by halting
and remaining halted.

e Byzantine Failures. A processor fails by exhibiting arbitrary be-
haviour.

A system designed to handle failstop failures is easier to implement than a
system that tolerates byzantine ones, which is the class hardest to detect and
manage.

2.2.3 Consistency in replicated systems

Since there are several copies of the same data, their value can change inde-
pendently ones from others. In this context appears the concept of consis-
tency. Consistency can be defined as, given a replicated system, how different
could be the copies of any replicated value of an object. Thus, a consistency
model establishes the access rules to any particular copy and the order of
the updates that each model requires. Tanenbaum in Tanenbaum and van
Steen [2007], defines a consistency model as a contract between the processes
and the datastore. If the processes agree to obey certain rules, the datas-
tore compromises to behave properly. Usually, a process that makes a read
operation on a particular data element, expects the return value from the
last write operation. Since different copies of the same data are accessible
from different processes, it is complicated to keep the last updated value for
all of them in order to obtain the image and behaviour of a single machine.
In this way, clients cannot perceive that they are accessing to different ma-
chines. The idea is similar to an external observer that sees and controls all
possible changes in the system so the users do not realise that the system is
replicated.

Considering the point of view where we observe the sequence of operation
to the data, there are two main types of consistency: server or data centric
and client centric approaches. They will be explained in more detail in chap-
ter 3 and 4 respectively. After these chapters, we will explain the causes to
the eventual consistency, often called a consistency model. However, in this
survey we consider eventual consistency as a condition that is desirable that

14 LPM-IUMTI-UPV

2.2. Distributed Systems. An explanation for features and characteristics

the majority of the systems accomplish. We will expose all the definitions
and arguments for it in chapter 5.

2.2.4 Connectivity loss

In this section we will explain what happens and how is treated a situation
of network failures that produces a partition of the network, resulting in the
splitting of the system into two or more subgroups. Besides, this partition
of the network does not allow to communicate among the subgroups. Now,
in this point, what should the system do? If clients continue to access to the
service in all the partitions, they could modify in a different and concurrent
manner the state of the system and produce as a result that the partitions
diverge in their values of the data. Once the healing of the partition takes
place, special mechanisms will be needed to recover the convergence of the
data and get finally the same state in all replicas. Other approximation is to
let accessible only the group that has at least the majority or quorum, i.e.
the half plus one nodes, to continue attending clients requests. In this case,
no possibilities of divergence of the data can occur, but a part of the clients
will be unattended. A drastic solution is to halt the system and reboot it.
[Chockler et al., 2001]

The first solution is named partitionable. As it is explained before,
the remaining subgroups after the impossibility of communication among
them are able to continue serving to the clients. These subgroups are called
partitions. This point of view keeps the system fully available meaning that
clients continue accessing to the different partitions and can modify data
values. However, we can find several complications when the modification of
the data is allowed in all the partitions since it is impossible to communicate
the changes to the other parts, at least -and in best cases-, for a while. In this
situation the update of the state is not shared anymore by all the replicas.
Furthermore, once the system is recovered from partition, if each state of the
previous partition has diverged, reconciliation techniques must be applied.
To solve this incorrect state of the replicas, in Davidson et al. [1985] we can
read some proposed techniques for this optimistic strategy, at the end, the
system will be fixed and it does not limit availability. To transfer the state
or the operations and transactions that took place during the disconnection
time. If two or more data modifications overlap, then a protocol is needed
to decide which result is finally applied. Thomas write rule is the easiest
solution, the last operation is the one that keeps the result, and the effects of
other transactions have to be rolled back (or undone). It can also be applied
if we are not working in a transactional environment. Other technique is to
run extra operations or transactions that repair the state. Version Vectors

LPM-IUMTI-UPV]_5

Chapter 2. Replication

and The Optimistic Protocol are explained in Davidson et al. [1985]. The
principal disadvantage is that for some time, clients might be accessing and
modifying stale or wrong data. We gain in system availability and, as a
consequence the whole system loses the unique image data transparency so
data is not consistent nor correct nor coherent.

Partitionable membership services have been used for a variety of appli-
cations where a global consistent state is not needed constantly, for example,
resource allocation, system management, monitoring, load balancing, highly
available servers and collaborative computing applications such as drawing
on a shared whiteboard, video and audio conferences, application sharing
and even distributed “jam session” over a network. A good list of them can
be checked at Chockler et al. [2001].

In contrast, applications that maintain globally consistent shared state,
usually avoid inconsistencies by allowing only members of one partition, the
primary component approach [Chockler et al., 2001}, to update the shared
state at a given time. This is the second solution, to have a quorum or a
group with the majority of the system nodes. The remaining subgroups block
and are not reachable for users. Thus, creating a decrease of the availability
of the system but data consistency is not lost. Once the system is repaired, it
is very easy to update the recovered nodes by transmitting the state that has
been modified. There are not writing and reading conflicts, there is no need
to reconcile any value, just to update it to the last modification. In other
approaches of this alternative to partition handling, the nodes from the minor
partitions commit “suicide”. These techniques developed to maintain the
consistency of the system are the pessimistic ones [Davidson et al., 1985]. If
no one of the subgroups does not reach the minimum components to become
a majority or quorum, the system simply will stop and liveness property will
not be guaranteed in the system.

At this point, it is clear that there is a tradeoff between availability and
consistency. If we design our system to be tolerant to partitions, the global
state may be incorrect for a while during a partition of the underlying net-
work. In the opposite side, if we rather keep our system consistent and correct
most of the time, these strong conditions that provide the system a consistent
state directly affect progress and availability. We can read this fact back in
Davidson et al. [1985] and Chockler et al. [2001]. Later, in 2000, Eric Brewer
presented this problem as a conjecture, the CAP conjecture. Two years later,
Nancy Lynch and Seth Gilbert proved it as a theorem. This is the topic that
we have explained in detail in the introduction chapter. This theorem leads
to a question very important for the area presented here. What if we want
to design a system that has a world wide extension? Such a system implies
to have a very wide network with a huge amount of nodes. Therefore, the

16 LPM-IUMTI-UPV

2.2. Distributed Systems. An explanation for features and characteristics

probability of a partition in the system will become higher. What are we
going to do to solve this situation? To stop the minor subgroups leaves mil-
lions of users unattended. It is necessary to give up on strong consistency
models and try to research on different approaches to design the systems by
analysing and inventing new mechanisms. Such mechanisms must allow the
system to progress even in a situation of partition.

2.2.5 Dependability and scalability

In replicated wide area systems Scalability is one of the most important
requirements as explained in [Homburg et al., 1996]. In an informal way,
scalability can be defined as the ability to support billions of users. This re-
quirement can be interpreted in two different ways. One way is to avoid using
components, synchronisation protocols or central algorithms, that present
problems for scaling. The other way is to use algorithms or techniques that
have a better performance in scaling. However, to scale massively as the
Internet requires still is challenging for the design of distributed replicated
systems, since the probability of a partition of the system network is in-
creased. Thus, we will have problems with consistency of the data or with
the availability, as stated before.

Dependability concepts

The notion of dependability covers the nonfunctional attributes of a computer
system that relate to the quality of service a system delivers over an extended
period of time. The quality of service relates to the behaviour of a system as
seen by a user [Kopetz and Verissimo, 1993]. The following four measures of
dependability attributes are of particular importance:

- Reliability: Measure of continuous service delivery, measured by the
probability R(t) that the system is still providing the correct service
after a time interval ¢, if it has been functioning correctly at t=0.

- Safety: Probability S(t) that a system will not fail in a catastrophic
failure mode within an interval .

- Availability: Measure of correct service delivery with respect to the
alternation of correct and incorrect service, measured by the probability
A(t) that the system is ready to provide the service at the point in time
t. A service or system is highly available when the probability has a
value greater than 99.999%. In other words, the system is unavailable
less than 300 seconds a year.

LPM-IUMTI-UPV]_7

Chapter 2. Replication

- Maintainability: Measure of the time to restoration from the last
experienced failure, measured by the probability M(t) that the system
is restored at time ¢ if it has failed at time ¢t=0.

There is a fifth important attribute of dependability -the security
attribute- that cannot be measured easily: the ability of a system to pre-
vent unauthorized access or handling information.

2.3 Diffusion Communication Protocols

To work as a single entity, any distributed systems need some communication
system to advance in the program execution and to share the information
needed to pursue its objective. As a result one of the most important com-
ponents is the communication protocol that the system uses. Depending
on the quantity of receivers and the order of delivering of the messages, it
can influence to the availability of the systems and to the consistency. A
very good survey that explains these concepts and others related to group
communication is Chockler et al. [2001].

2.3.1 Classification

The properties that a communication protocol can guarantee are the follow-
ing:

Properties and guarantees

o Atomucity is the property that says that a message has to be delivered
to all or none of the nodes.

e Reliability ensures that all the messages will be delivered to all the
processes.

e Order, all the messages can be delivered in certain order if an order is
chosen.

e Non-duplicity, a message cannot be delivered more than once to any
process.

o Uniform agreement if a process has received a message, all the rest of
the processes have received it too.

o Uniform integrity if a process has received a message if and only if
another process has sent it.

18 LPM-IUMTI-UPV

2.3. Diffusion Communication Protocols

Attending to the quantity of the destinies, a diffusion can be classified
as a broadcast if we deliver to all the nodes alive, a multicast if it is only a
subgroup of the alive nodes or unicast or point to point if there is one sender
and one receiver. Typically, broadcast is more used but is hard to implement
if the number of nodes of the system is too high. In this particular case,
a combination of multicast is used, being the most famous the so called
mongering techniques.

We will pay attention to the order of the delivering of the messages in
the destiny group. These communication protocols typically guarantee the
message delivering to a determined group of receivers. Their complexity
depends on the ordering of the messages in the destiny. This complexity can
be none, if order in delivering is not needed.

The simplest order in delivering is FIFO, the messages are received in
the order that each process has sent them. To implement it is very easy:
each process adds a number with the identification number and a number
indicating the sequence of the message that it has sent. Another typical order
is causal delivery. Messages are delivered following the causal order defined
by Lamport and explained in section 3.1.3. In this case implementation is a
bit difficult since it is necessary to carry extra information of other processes
in the messages. The most known implementation of this communication
protocol is based in logical clocks [Lamport, 1978]. And the last that we
comment in this text is total ordering, that is, all the messages are delivered
in the same order. Is the most hard and expensive to implement, since it
needs consensus among the nodes. A very simple way to implement it is by
means of using a designated process that is called sequencer. When a process
wants to broadcast a message, it sends the message to the sequencer, who
will add a sequence number to the message and will make the broadcast to
all the destinies. It is very clear that if the sequencer is somehow isolated or
crashes, the system stops.

Another approach to communication protocols quite particular is the gos-
sip or epidemic algorithms [Demers et al., 1987]. This technique basically
consists in delivering the messages to some of the processes that one partic-
ular process is connected. Once a process receives a message, if it did not
spread it, then it spreads it to some of the processes that have direct com-
munication. This type of protocols imitates the behaviour of a viral infection
spreading and it guarantees that the messages will arrive to all the processes
in the system. This kind of communication is interesting in environments
where the nodes connected to the system vary rapidly or to interconnect
different systems.

Now that we have an idea of how to implement group communication is
more suitable to understand why the way the system communicates affects

LPM-IUMTI-UPV]_9

Chapter 2. Replication

both, availability and consistency. The former is affected if the updates do
not reach the destiny and the latter is affected by the order that the messages
are delivered. For example, if we have a system with FIFO and reliable
communication delivering order, we will have FIFO or PRAM consistency
granted. Although this is considered to be true, the equivalence between a
communication order and a corresponding consistency model, it has not been
already formally demonstrated. This topic will remain as a future work.

2.4 Replication models

In this section we will present four replication models, which are passive
replication [Budhiraja et al., 1992], active replication [Schneider, 1990], and
two combinations of both, semi-passive replication [Défago et al., 1998] and
semi-active replication [Powell, 1993].

2.4.1 Passive replication model

In this replication model, also called Primary backup, there is one active
replica, called the primary server. All the clients send their requests and
it processes the requests sending later the answer to the clients and to the
other replicas. They are called backups and they receive the result of the
processing of any request, as we can see in figure 2.1.

Submit " End Client ¢
\ - 1’ o .-".-...H_,
| Processing Primary Server '/
I g
\ Update Backup =2
1\ .

1
|
1
\

;-
m Backup 51
] pdate |——>t

}seapeosg
s|qeljay

Figure 2.1: Passive replication.

In a relaxed approach of the model, the backups are updated periodically,
which relaxes the consistency. In the most strict model, the primary server
cannot answer the client until all the backups are updated. This approach

20 LPM-IUMTI-UPV

2.4. Replication models

is called pessimistic because it supposes that the system is prone to fail and
some failure may happen and it ensures first that the system is updated before
the primary answers to the client; the opposite one is called optimistic since
it does not consider that the system would fail and first answers to the client
and then to the replicas (or at the same time). It is also called eager because
it focuses on answering fast to the client rather than spread the update to
the other replicas; the opposite is called lazy, which leaves the “hard work
of updating” for a future moment. The principal problem of this replication
model occurs when the primary server fails or appears to have failed, it
is a single point of failure. In both cases a backup server will substitute
the primary, stopping all the system. But, in the second case, a situation of
conflict between two primaries has to be solved. Another approach of passive
replication permits the backup servers to serve only read requests, allowing
an increase of scalability and a soft relaxation of the consistency. Passive
replication model is suitable for asynchronous designs, allowing scalability
and adaptability or dynamism.

2.4.2 Active replication model

While in the previous model only one single replica has all the responsibility
of answering the client and updating the other replicas (which is good in
situations of indeterministic behaviour of the code), in this one, active repli-
cation, all the replicas receive requests and answer the clients. No protocol
for recovery is needed, but if the code that the request executes in the servers
has an indeterministic behaviour, problems may arise. It is necessary that
all the copies receive the request in sequential order. Otherwise, it could lead
to inconsistencies. For this reason, the algorithm in charge of managing a re-
quest is more complex than in the passive replication model. It needs a total
order reliable broadcast, which implies consensus and, in an asynchronous
system, consensus cannot be reached [Fischer et al., 1985]. A basic example
of active replication is shown in figure 2.2.

One remarkable advantage of this model is that it supports any kind of
fault tolerance, from fail-stop to Byzantine. In the most severe models, like
the latter, we could assume f simultaneous failures if the system is composed
by 2f+1 to 3f+1 number of replicas, depending on the communication chan-
nels and the synchronisation level. In this case, the client has to obtain a
majority of identical answers to understand that the answer is correct. It
is convenient to use this model when the operation to execute modifies a
quantity of the state of the system is quite large and the time that takes
to execute the request is short. In particular, it will be advantageous when
the quotient between the quantity of the modified state and the operation

LPM-IUMTI-UPV 21

Chapter 2. Replication

Submit L End |-
| Server Sd
Forward Processing |

N\ 2’ < Server 52
0 B- Processing
.\ m o e
% 3 - Server 3
) @ — Processing |————p
m - S——
-

Figure 2.2: Active replication.

execution time is considerable. The bigger the quotient is, the better.

Thus, active model will be suitable to use when the operations executed
take less time to execute than the time to transfer the modified state. In
the opposite situation, if the operation is longer executing the request than
the cost of the transference of the modified data, then the passive model
will become a better option. In a scenario where there are some quantity
of services to be executed and there are enough nodes in the system to
have a primary node for each service then, the system will be faster and
more productive with passive replication than using active replication, where
tasks have to be executed serially. Now, where is the line that separates the
preference of using passive or active replication? To answer to this question
some practical experiments should be carried out to consider which model
suits better in the distributed application to implement. Last, but not least,
a couple of important characteristics of the active model are that it supports
the worst failures and its reconfiguration time is shorter.

2.4.3 Semi-passive and semi-active replication models

Semi-passive replication model is presented in Défago et al. [1998] and it is a
variation of the passive model explained before. It tries to solve the situation
when the primary fails and it needs to be substituted. All the requests arrive
to all the replicas. At this point, we will need consensus to answer the client
since there can be an indeterministic answer. This stage is redeemed by using
it to propagate updates and to confirm them. In case the primary crashes,
the consensus protocol decides which is the next master and it successfully
solves if the first primary comes back. The main inconvenient of this model

22 LPM-IUMTI-UPV

2.5. Conclusions

is the needing of consensus makes it very difficult to scale with nodes and
operations. It solves gracefully the problem of the master crashing, however
this is not a common situation in passive replication. Therefore, it is an
interesting replication model from the point of view of theory, but it is not
practical.

Finally, semi-active replication model tries to overcome the problem of
working with indeterministic requests and the filtering made by the client
to choose the system answer. Basically, it is the same scheme than active
replication, but with a new designated node that acts as a kind of master.
Its work is to compute the indeterministic tasks, while the others remain
waiting for the output, and to filter the answer of all the replicas to reply
to the client. It is also called the leader-follower model, it was initially
developed for Delta-4 system [Powell, 1993].

2.5 Conclusions

In this chapter we have introduced the main concepts to understand what a
distributed system is and how it works. With these notions, the explanation
of the following chapters and the challenges that they expose will be more
understandable.

LPM-IUMTI-UPV 23

CHAPTER

3

Data-centric consistency
models

“The proper order of things is often a mystery
to me. You, too?”, the Chesire Cat said.

— Lewis Carroll, Alice in Wonderland

In this chapter we will explain different consistency models taking the
point of view of how data change among replicas. All these definitions are
made over a multiprocessor scenario, but they can be applied to replicated
environments. That is the reason why along the chapter the words processor
or process and multiprocessor are used as synonyms for node and replicated
system or group, respectively. They are also called the data-centric models.
Of course, as we will explain, choosing a consistency model is a tradeoff
between increasing concurrency by decreasing ordering constraints and im-
plementation and programming model complexity.

For a better understanding of the examples, we take the formal model
and definitions used in Ahamad et al. [1993]. A system is a finite set of
processors (or processes) that interact via shared memory that consist in a
finite set of locations. A processor’s interaction with the memory is through
a series of read and write operations on the memory. Each operation acts
on some named location and has an associated value. In DSM, the processes
interchange messages to share the same memory.

A write operation issued by processor p that stores the value v in the
location z is denoted by w,(z)v. Seemingly, a read operation, r,(x)v, returns
to process p the value v stored in the location x. A local history of a processor
p, Hp, is a sequence of memory operations from the execution of a process,
including the values read or written by each operation. Now, we can define
a history as a collection of all the local histories, one for each processor.

An operation is said to be in H if it is in one of the local histories that H
comprises. In the definitions of different memory consistency models different
operation orders will be used, sometimes in combinations with other orders,
to constrain the set of allowable executions.

If 0, and o4 are two operations in H, and o; appears first, then we say that

25

Chapter 3. Data-centric consistency models

o1 precedes 0y in program order and write o —>,, 02. This order is partial on
H since it does not relate operations between two different processors.

Different kinds of memories will be defined below by considering seriali-
sations of certain sets of operations if H is a history, then S is a serialisation
of H if S is a linear sequence containing exactly the operations of S. The
serialisation is legal if each read operation from a location returns the value
written by the most recent preceding write to that location, based on the
order given by S. If o; precedes 0, in S, we write 01 —g 0s.

If H is a history and p is a processor, H,, contains the subsequences
of H consisting of all operations by p and all write operations by other
processors. H|z and H,,|x indicate that the sequences contain operations
only of location .

Here, the memory operations in a process history will be written at the
bottom of the example figures, from left to right in program order. Prior
to program execution, every location in a shared memory is in some state,
the initial value of the location. Similarly, the state after the program has
executed is the final value.

A coherent schedule is an interleaving of single-address process histories,
where every read operation returns the value written by the immediately
preceding write operation (except reads that precede the first write, which
must return the initial value). The last write in the schedule must write
the final value for the location. A multiprocessor execution is considered
coherent if a coherent schedule exists for each address. Therefore, all the
values that finally each processor sees are the same [Cantin et al., 2005].

3.1 Introduction

As we explained before, a consistency model is essentially a contract between
processes, clients or users and the data store and the replicas that store
the data. The models that are going to be defined could be consulted in
Mosberger [1993] and the citations during the chapter in more detail. Other
publication that can be consulted, if interested, is [Steinke and Nutt, 2004],
where the author tries to define the consistency using a set of conditions.
Each of those sets is built as a list of properties. In the end, the authors
show that all consistency models can be defined combining a reduced set of
conditions. We will define and explain these conditions in section 3.2.

The models are sorted from the strongest to the weakest. In general,
the programming model becomes more restricted (and complicated) as the
consistency model becomes weaker.

Strong consistency can be provided by appropriate hardware and/or soft-

26 LPM-IUMTI-UPV

3.1. Introduction

ware mechanisms, but these are typically found to incur considerable penal-
ties, in latency, availability after faults, etc. In every research community
where replication has been used, there have been proposals to offer the clients
less guarantees that a transparent single-copy image, in order to deliver bet-
ter performance. For example, strong consistency designs typically require
all replicas to receive messages in the same order. A communication system
that keeps messages in the same order typically sends all messages through
a single sequencer node or on a common bus, and this becomes a bottleneck
and a single point of failure for the whole system. If instead we allow mes-
sages to be carried independently, and applied to each replica whenever they
arrive, performance may be much better, but the clients can see inconsis-
tencies that would never happen with non-replicated data. Those would be
weak consistency models.

3.1.1 Strict consistency

Also called atomic, it assumes that all the updates are propagated instantly
to all the replicas or processors. It is the most strict and synchronous model
and it is ideal and impossible to implement, since there is always a latency
in communication. The closest approach is to execute the system in a single
machine with one single memory. In this approximation, writings are ten-
tative and each time a write is executed, the system blocks all the reading
and writing operations. Then, it takes place many decision rounds in order
to decide when to apply the change. It is the same case for read operations.
Since there is a very strong condition of synchronisation, we will observe that
for long periods of time the system is blocked and it is impossible to execute
any operation. Thus, the availability decreases one more time, to achieve
synchronisation for a strict image of the system, like if we were working with
a single machine. In the figure 3.1 below, we can see that every moment that
any operation takes place, the time line is separated clearly into time slots
that indicate when a value is valid. Each write defines the period of time
that a value is correct. This model assumes that the latency is zero and the
bandwidth, infinite. Consequently, it is ideal and practically impossible to
implement. There is a slightly less strong consistency model that does not
block for reading operations. But, for writes the model behaves the same
way.

However, Leslie Lamport proposed the atomic register concept to specify
the consistency model in [Lamport, 1986b] and [Lamport, 1986a]. He defines
an atomic register, which is safe (a read not concurrent with a write gets the
correct value) and in which reads and writes behave as if they occur in some
defined order. In other words, for any execution of the system, there is some

LPM-IUMTI-UPV 27

Chapter 3. Data-centric consistency models

P Wix)1 Wix)3
' ! ? !
' ! ! !
Pi | |W(X)2 | |
I T | |
i i i i
P, | | | |
! ! | !
| [[[
P. | i | |
i R(x)1 i R(x)2 i R(03 i
| [| |

Figure 3.1: Strict consistency model.

way of totally ordering the reads and writes so that the values returned by the
reads are the same as if the operations had been performed in that order, with
no overlapping (the precise formal condition is developed in the references
cited above). An atomic register satisfies the additional requirement that a
read is never concurrent with any write. Besides, an atomic register trivially
implements one in which all reads and writes are sequentially ordered.

A particular version of this model is the linearisable model (figure 3.2).
Basically, is the same model as strict but it takes into account the delay in
the propagations of the data also called latency and it is applied in an envi-
ronment that processes interact with objects [Herlihy and Wing, 1990]. This
consistency model is implemented for objects rather than registers. Linearis-
ability provides the illusion that each operation takes effect instantaneously
at some point between its invocation and its response, implying that the
meaning of a concurrent object’s operations can still be given by pre- and
post- conditions. It is also considered a safety property; it states that certain
interleaving cannot occur, but makes no guarantees about what must occur.

28 LPM-IUMTI-UPV

3.1. Introduction

Wix)1 Wix)3
P o o 7 !
I [! |
P, | Weh2 | |
| e ! !
' ! ! !
Ps | I | |
' ! ! !
| | | |
P. | ; I [t i
T ReO1 T ROK02 For ROO3 i
[P— i | |

Figure 3.2: Linearisable consistency model.

As a final comment, it is trivial to conclude that these two models are very
hard to scale. The conditions of synchronisation and order are so strict that
if it is very difficult to implement a system that emulates them very well, to
imagine to make them grow with more machines will make the system really
slow.

3.1.2 Sequential consistency

This model guarantees that the result of any execution of n processors is the
same as if the operations of all processors where executed in some sequential
order, and the operations of each individual processor appear in this sequence
in the order specified by the program. In other words, sequential consistency
[Lamport, 1979] is equivalent to the condition that there is a total ordering on
the set of operation executions. A condition that can be satisfied even though
the events comprising different operation executions are actually concurrent.
The atomicity condition traditionally assumed for multiprocess programs is
sequential consistency, meaning that the program behaves as if the memory
accesses of all processes were interleaved and then executed sequentially. It
has been proposed that, when sequential consistency is not provided by the
memory system, it can be achieved by a constrained style of programming.
Synchronisation commands are added either explicitly by the programmer,
or automatically from hints he provides.

Lamport also gave two implementation requirements which, if met, would
enforce sequential consistency.

R1. Each processor issues memory requests in the order specified by its
program.

LPM-IUMTI-UPV 29

Chapter 3. Data-centric consistency models

Wix)1l

1 —C
P Wix)5 Rix)1

2 O {t
p Wix)2 Rix)5 Rix)1

: O O
P. Rix)2 R(x)5 Rpo1

[=) | |
Ps R(x)2 R(x)5S R(x)1
{1 {1 —

Figure 3.3: An example for a sequential execution in a system with
this consistency model.

R2. Memory requests from all processors issued to an individual memory
module are serviced from a single FIFO queue. Issuing a memory
request consists of entering the request on this queue.

Assuming one writer, in the figure below, we can see an execution where
an inversion has happened. A process has read an older value, while other
process has read previously the newest value. This problem can never happen
in the previous model since it has a severe control of the accesses to the values.
This means that if a process reads a new value, no other processes can read
any past value. In the sequential model there is not such a control of the
time an update is applied and the processes work with different velocities
allowing this particular issue to occur.

Now, we can define a sequentially consistent schedule as a schedule of the
memory operations from an execution that demonstrates sequential consis-
tency is satisfied. In other words, a schedule of all the memory operations,
in which every read returns the value written by the immediately preceding
write with the same address.

One of the main disadvantages of this model is that makes very difficult
to scale since all the copies need to reach commitment in the order of all the
updates to apply. But it is a widely used consistency model since it makes
all the values of all the replicas to converge to the same value. The easiest
way to implement a system with sequential consistency is to use a special
process to order the messages by assigning a sequence number to them. All
the processes of the system send to it the messages that want to deliver to
the others. The sequencer puts the number and then broadcasts it to all the
nodes of the system. Then, each one of them will apply the messages in the
correct order.

30 LPM-IUMTI-UPV

3.1. Introduction

3.1.3 Causal consistency

Causal consistency model is based on the relation happens before, the causal
order of events defined by Lamport [Lamport, 1978]. It distinguishes between
events that are potentially causally related and those that are not. If an event
b is causally related with a previous event a then everyone sees the event a
before b.

Formally, there are three conditions to define potential causal relation or
happens before. Given two events a and b, two processes p and ¢, and a
message m, both events are causally related a — b if:

1. Events a and b take place in the same process and a precedes b.

2. Message m is sent by p as a send event that we call a. Event b is the
reception event in process g.

3. Given a third event ¢, a — b if a — ¢ and ¢ — b. This is called a
transitive property.

The writes on the variables are considered as send events and reads are
receptions. That is, if there is a message exchange, those set a causal order.
Otherwise, it is said that the operations are concurrent and cannot be or-
dered. It is a decision of the designer of the system or the programmer if it
should be an order for those concurrent operations and which one choose to
reconcile values.

With this model is no longer necessary the collaboration with other nodes
to obtain the correct order (one that accomplishes the model conditions) of
the updates to make decisions. So this is a fast consistency model, according
to the definition given in Attiya and Friedman [1996]. It is considered for
some authors as a weak model since it could allow access to stale data and
different replicas may have different final values due to concurrent operations
if no reconciliation techniques are applied. In Fekete and Ramamritham
[2010] the authors stand that this consistency model is not strong since the
replicas do not receive the updates in the same order and stale data could
be accessed.

It is weaker than sequential consistency since causal consistency does
not guarantee that all the copies converge to the same value, they are not
eventually coherent but consistent because it follows the conditions required
for the causal consistency model. As we will show later, all the sequential
executions are also causal consistent.

In the figure 3.4 we can observe an example of a system that uses a causal
consistency model:

LPM-IUMTI-UPV 31

Chapter 3. Data-centric consistency models

p, Wool W03
1

P. \ T—B05] S W(x)2

P: '-.Il'____l}hté}l \ ‘ EE}B R(x)2
P. —— Rl \ﬁ‘tx)z —_R(03 Vi

W

Figure 3.4: A causal execution in a system with an example of two
concurrent writes.

3.1.4 FIFO consistency

FIFO consistency, or PRAM consistency [R.J. Lipton, 1988] (demonstration
n [Steinke and Nutt, 2004]), says that all processes see all the write oper-
ations performed by each process in the very same order that each process
has executed them. This condition is called program order. So, this model
guarantees that any process that reads some data for a period of time, the
process will see that all the writes performed by every process will be seen in
the order of the program that has been executed. But nothing is said about
the order of writes among processes, and they will be observed as a mixture
of the program orders of the different processes.

In this weak model, each process has a local copy of the shared memory.
To ease scalability, each access has to be independent of the time that takes
to access to the rest of other copies. The conditions to accomplish are two:

1. If a processor has a read request, it will return the last updated value
of the data in its memory.

2. Ifit receives a write request, then the processor updates first its memory
and, secondly, it broadcasts this new value to the rest of the processors.

In the figure 3.5, there is an example of a FIFO or PRAM execution, and
we can see that Each processor will see its writes in FIFO order and the
writes of the other processors may be perceived in different interleaving in
each process.

32 LPM-IUMTI-UPV

3.1. Introduction

Wil Wix)5
1 —O 7
P! Wix)2 Ri{x)5 Wix)7
o [Tt
P: Rix)1 Ri(x)5 Rix)2 Ri{x)7
P. RGO1 R)Z R(x)5 R(x)7
1 {1 - -

Figure 3.5: A FIFO or PRAM execution.

3.1.5 Cache consistency

Cache consistency model has been firstly defined by Goodman [1989]: “each
read of a memory location is guaranteed to obtain the most recent value”.
In DSM, we change memory location by variable. Thus, writes to different
memory locations, or variables, may be observed to occur in different order
by different processes. It is similar to a FIFO access, but considering the
accesses to a data variable instead of the operations of the program order, as
figure 3.6 shows. This is quite an interesting model because every variable
will be read with a correct sequential value, but the global sequence seen by
all the processes may not be sequential since concurrent access to variables
will alter the program order. Thus, we can observe sequences with accesses
to the variables that do not correspond with the order the writes were issued
by each process or processor. As a result, we will see always the last value
written in the variables and the vision of all the replicas of the data will be
coherent or convergent.

Later, in Gharachorloo et al. [1990] this consistency model is also called
coherent consistency for this peculiarity. All the values of the replicated
variables are convergent to the last updates but without being as strict as
sequential consistency. The restrictions that the program order imposes are
partially removed. We may observe the program order but we perceive some
sequential order in which any variable is accessed and always the last written
value. This order may only respect the program order for the variables inde-
pendently. This situation can cause that the processor could have executed
the write operations to different variables in any other order totally different
that has been seen by the reader. In case that we have one only variable with
control of concurrent access in our system, we will see that the sequence ob-
served will follow also PRAM consistency, but it is a very particular, and the

LPM-IUMTI-UPV 33

Chapter 3. Data-centric consistency models

only one case that a sequence can guarantee both models. Another difference
between those models is that while PRAM consistency does not need the col-
laboration or agreement with other processes to establish the sequences that
the others will observe, to implement cache consistency will be needed to
inform the processes which is the order that has to be perceived.

p, Wi W2 Wi(y)5
1 O 0 O
P, w3 Wiy)4
_C G
P, Riy)1 Riy)5 R(X)2 R(y)4 RO03
Lt Lt Lt Lt L
P Riy)1 Rix)2 Rix)3 R(y)S R(y)4
4 0 n 1 i [}

Figure 3.6: A correct cache execution without the blocked processes.

It is considered the weakest consistency model in a multiprocessor envi-
ronment. To implement it in a DSM system will be quite complicated and
some nodes have to be blocked in order to preserve the sequential access to
the variables. As a consequence, the system performance will decrease con-
siderably. Therefore, it will be very complicated and practically inviable to
scale up while keeping this consistency model. In such conditions, to imple-
ment a sequential model would be as expensive as implementing cache and
the system will accomplish more data guarantees, like convergence of data
and program order. See figure 3.6 for an example of a sequence of cache
model consistency behaviour.

3.1.6 Processor consistency

The Processor consistency model is the combination of PRAM consistency
plus Cache consistency, which means that is strictly stronger than both. Both
consistencies, PRAM and Cache, have been explained before for a better
understanding of the model presented here. Processor consistency was firstly
presented by Goodman in Goodman [1989] and later, in Ahamad et al. [1993]
is defined formally and a stronger version of it is proposed.

Goodman’s first definition says as follows: “A multiprocessor is said to be
processor consistent if the result of any execution is the same as if the opera-
tions of each individual processor appear in the sequential order specified by

34 LPM-IUMTI-UPV

3.1. Introduction

its program ”. At first sight, it might be very similar to PRAM consistency.
However, Goodman considered in the cited article that this consistency model
lays in the middle of a line where strong or sequential consistency and weak or
cache consistency are the maximum and the minimum respectively, guaran-
teeing then the conditions of cache consistency. Thus, Processor consistency
is the combination of Cache and PRAM consistencies. An example sequence
of Goodman’s definition is shown in figure 3.7.

p, Wl Wz Wiy)5
1 O Cr O
P, W3 Wiy4
hed e
P R(x)3 Riy)1 Riy)4 R(x)2 Riy)5
) = = = 0 0
P, R0)3 Riy)1 R(x)2 Riy)4 Riy)S
O = O O 0

Figure 3.7: A processor consistent execution.

Due to different interpretations of Goodman’s definition of processor con-
sistency, in Ahamad et al. [1993] claims that in Gharachorloo et al. [1990]
there is a redefinition of it to avoid sequences of operations not desired. It
combines coherence with “semicausality”, which is very similar to the second
and the third conditions of the formal definition for causal consistency (see
section 3.1.3). This change is defined by the weakening of writing process or-
der and reading process order, in other words, a weaker notion of the program
order. Reads are allowed to “bypass” earlier writes by the same processor.
We could say that the different definition for Processor consistency is the
addition of causality among processes.

Ahamad himself says that a system that implements any of these two
definitions for Processor consistency will have problems maintaining and im-
plementing the necessary mechanisms for a correct behaviour to accomplish
the guarantees that this model offers. In this case, he arguments that pre-
sented these limitations, it will be easier to implement a sequential consis-
tency model that is stricter.

LPM-IUMTI-UPV 35

Chapter 3. Data-centric consistency models

P Wiy)l Wix)2 W(y)5
1 . O O
"
P ™ Wix)3 Wiy)4
2 (| Cr O
Riy)1
P: Riy)1 Rix)3 R(x)2 R(y)4 Riyl5
L L L . u

P. Riy)1 R(x)3 Riy)4 R(x)2 Ry)5

L L (., L Lt

Figure 3.8: A processor consistent execution following Ahamad et al.
[1993] definition.

3.1.7 Other consistency models

We have described the consistency models that are related to the purpose
of this text. But there are others, some weaker than the ones presented
here, like Slow memory, where the write operations are propagated very
slowly [Hutto and Ahamad, 1990] or Local consistency. The later one is
considered the weakest consistency model of all. Many others are related
with synchronisation.

A multiprocessor is slow consistent if reads must return some value that
has been previously written to the location being read. Once a value has
been read, no earlier writes to that location (by the processor that wrote
the value read) can be returned. Writes by a process must be immediately
visible to itself.

3.2 Unified Theories of Shared Memory Con-
sistency

Several classifications of memory consistency models have been developed.
From all of them, we choose the classification presented in Steinke and Nutt
[2004] for its expressionism of qualities and conditions, that defines a consis-
tency model as a combination of one or certain set of these conditions. The
other classifications organise memory models as being stronger than others
or being contained in others [Cholvi and Bernabéu, 2004], but they do not
insist upon defining them as a set of conditions used to prepare a consis-
tency model, like a food recipe. Steinke and Nutt allows us to reason with
these properties more easily and visually decompose any consistency model

36 LPM-IUMTI-UPV

3.2. Unified Theories of Shared Memory Consistency

into properties. From the properties we can infer new consistency models,
not knowing if they are convenient for real systems, but they can inspire or
introduce new approaches to implement and consider if it is implementable
and suitable for a real case.

GPO - Global Process Order The condition that there is global agree-
ment on the order of operations from each process.

GDO - Global Data Order The condition that there is global agreement
on the order of operations to each variable.

GWO - Global Write-read-write Order The condition that there is
global agreement on the order of potentially causally related writes.

GAO - Global Anti Order The condition that there is global agreement
on the order of any two writes when a process can prove it has read
one before the other.

One could do some associations with these properties and other ones
defined in other consistency models, such as the semicausality condition
[Ahamad et al., 1993] is very similar, if not the same, as GWO. A consistency
model is said to be stronger than another if every condition required by the
weaker model is also required by the stronger one. Thus, a stronger con-
sistency model has a more highly constrained behaviour than a weaker one.
Sequential consistency is strictly stronger than processor consistency which
is strictly stronger than cache and PRAM (FIFO) consistency. However,
PRAM and cache are not comparable between them as well as cache with
causal. At the same time, causal consistency is stronger than PRAM. From
up to down, the consistency models are ordered from stronger to weaker.
Those that are related with the relation stronger than (or weaker than if
we look the opposite way) are indicated with a line. Those that cannot be
compared are not connected by any line.

From the bottom to the top, the models are described by the combina-
tions of the properties. Starting from the weakest, the bottom, we found local
consistency, where no conditions or properties have to be accomplished. Di-
rectly stronger we found immediately slow consistency, defined by a relaxed
version of a combination of GPO and GDO. In this particular case, two
or more properties can be combined to obtain a weaker model. We could
combine more properties to find weaker models than the properties that de-
fine the consistency models. In the other cases, in this example, we will
see that the combination of properties will result in a stronger consistency
model. Following the left branch, we find FIFO or PRAM consistency model,

LPM-IUMTI-UPV 37

Chapter 3. Data-centric consistency models

GPO4+GWO4GAO

Sequential

GPO+GDO+GWO
Defined in [Ahamad et al. 1993]
GPO+GAO GWO+GAO
GPO+GWO
Causal
GPO+GDO GDO+GWO
Processor
GAO
I
GPO GDO GWO
PRAM Cache
GPDO
Slow

0
Local

Figure 3.9: The complete lattice of consistency models.

defined by GPO. If we add GDO to this property, we obtain processor con-
sistency defined by Goodman [1989]. Strictly stronger becomes the model
if we change GDO by GAO. Going back to slow consistency and taking the
right branch, we find cache or coherent consistency characterised by GDO.
Strictly stronger there is GAO property, which defines a consistency model
not named yet. Now, returning to the bottom of the lattice, and taking the
right branch, semicausality property or GWO is stronger. If we add GPO
or process order, we obtain causal consistency. Other new consistency mo-
dels can be inferred by adding GDO and then GAO for a stronger one. The
authors suggest that those models without names could be interesting to be
explored. Above all the combinations that includes a subset of GDO, GWO
and GPO we find processor consistency defined by Ahamad et al. [1993].
Finally, the strongest one, at the top, there is sequential consistency, formed
by the properties of GPO, GAO and GWO.

38 LPM-IUMTI-UPV

3.3. Considering implementation aspects

3.3 Considering implementation aspects

In this section some basic techniques to implement the main consistency
models explained in this chapter will be seen briefly. Of course, there are
many possible implementations apart from these presented here, which are
some of the most familiar among distributed systems.

Sequential consistency can be achieved by means of a FIFO total order
broadcast. A simple idea to obtain this broadcast is implementing a se-
quencer. It is a designated node of the system that receives the messages
to send to all the nodes and adds them a sequence number. Then, the rest
of the nodes and itself will receive the messages with this sequence number
that helps them to sort the messages to be applied. On the negative side of
this implementation we have that the designated node can crash and then
the system must have a mechanism to detect it and then to choose another
node as the sequencer. The reader will notice the similarities with passive
replication model and the primary crash problem, indeed, it is practically
automatic to implement sequential consistency in a pure passive replicated
system. Another typical implementation is using a token. Furthermore, one
can trivially realise that these methods are hard to scale provided that in the
first example the sequencer is a bottleneck and in the second case it could
take a really long time before a node gets the token. The node that possesses
the token has the power of adding the sequence number to the message and
to broadcast it to all the rest of the nodes.

Next consistency model, causal, can be implemented directly with a causal
broadcast. Moreover, it can also be resolved with a reliable FIFO broadcast
plus additional causal information needed in the messages. This was not nec-
essary in the first case because the communication protocol gives the support
for causality information and in the second case is mandatory to include it
at the programming level and making it more difficult, alleviating the me-
chanisms to support the communication protocol. This second approach is
beneficial for system composition, since it is easier to implement FIFO chan-
nels to interconnect several systems allowing an open door to a seriously big
scalable behaviour.

As well as causal consistency, FIFO or PRAM consistency model can be
implemented with the same communication protocol and, in particular, can
be implemented automatically with just a FIFO broadcast. Evenly, with a
reliable broadcast will be enough if each process or node of the system adds a
tuple with its identifier node number and a sequence number of the operation
in it. If we examine this information before delivering (understanding deli-
vering as the process of analysing the message content after it is received)
the message to the application. Again, by simplifying the communication

LPM-IUMTI-UPV 39

Chapter 3. Data-centric consistency models

protocol, the software becomes a bit tricker.

Furthermore, these two models, causal and PRAM, are considered fast
models, following the definition of fast consistency models from Attiya and
Friedman [1996]: “An implementation, satisfying a certain consistency con-
dition, is fast if the execution time operation is significantly faster than the
network delay”. Besides, they do not need any kind of consensus or col-
laboration (meaning and implying synchronisation) with other nodes of the
system. This characteristic, apart from allowing them to scale up easily, pro-
vides to the system to be consistent when the system reconnects and heals
from a network partition. The data probably will not be the same in all
the replicas, but the conditions to accomplish the contract of the consistency
model are not violated. These two considered weak consistency models solve
the CAP Theorem described in the introduction of the work. Although this
may be incredibly useful, there is the problem that the data is not coherent,
and usually coherence of the data is desirable in a system. We have finally
arrived to the necessity of mechanisms to make these models to converge, to
make them eventually consistent. Fventual consistency is a trending topic in
late years in distributed systems due to the use of these weak consistency mo-
dels to implement high scalable systems. It will be discussed and explained
deeply in chapter 5.

Cache consistency, where the access to the variables is sequential, the
implementation proposed is similar to the approach of the sequencer for
sequential consistency, but with as many sequencers as variables. Then, with
a FIFO broadcast will be enough. Thus, the problem with this model is the
same as the sequential one, even worse, since there are as many sequencers
as variables, which makes the system really hard to work and scale. Cache
consistency model makes sense in a multiprocessor machine since the access
to the registers already provides this consistency, as we can read in Goodman
[1989].

Finally, an example to implement processor consistency would be the
combination of a FIFO and cache implementation, sequencers for the vari-
ables and a FIFO communication protocol. One more time, we will have the
same problems than with cache consistency.

3.4 Conclusions

In this chapter we have explained a consistency model considering the point
of view of data and ordering of operations. A consistency model is defined
as a set of rules, or restrictions, to accomplish. It is a contract. The models
presented here were strict, linearisable, sequential, causal, processor, PRAM

40 LPM-IUMTI-UPV

3.4. Conclusions

or FIFO, cache or coherent, and the mention of other consistency models.
From this group, the first two are the only ones that require of explicit
synchronisation, while the others are designed in a manner that is possible
to lower the degree of synchronisation by making accessible that should be
already updated in the strict model. Moreover, reorganisation of messages
before updates being executed, undoing and redoing of message effect as well
are allowed. This fact tell us that synchronisation plays an important role in
the consistency of the system. Moreover, the more synchronised the system
needs to be in order to achieve consistency rules and, what is more important
for modern distributed systems, it complicates scalability and, thus, partition
tolerance. Going back to the consistency models explained, those that did
not need additional mechanism to allow the data to converge are complicated
to scale to a large number of nodes and keep consistency with a reasonable
system throughput. This is an important reason why systems are being
implemented nowadays using asynchronous programming.

It is interesting to point out that, even considered as a weak model,
cache consistency, defined by the GDO property, is considered a convergent
model since all data values remain coherent. These model and those that
have as an ingredient the GDO (or GAO, that is strictly stronger) will be
data convergent. However, the models that do scale well are those that are
not data convergent, they do not accomplish GAO or GDO and additional
mechanisms will be needed to this end. Therefore, convergence is a property
that some consistency models have and is interesting for the majority of
the distributed applications. Such a concept is called a consistency model,
eventual consistency, which will be explained in detail in chapter 5.

All this reasoning leads us to an interesting question. If we want a system
to be scalable, we have to choose a consistency model that does not converge
naturally and we have to implement some techniques to solve conflicts and
data incoherency. What do we do while these problems are fixed? In the
following chapter we will see client or user centric consistency models to start
answering this and other questions.

LPM-IUMTI-UPV 41

CHAPTER

4

User-centric consistency
models

“Life is what happens to us while we are
making other plans.”

— Allen Saunders

4.1 Introduction

Weakly consistent systems rely typically on the proper handling of some
periods of time were inconsistencies may appear. The most common cause
for inconsistency is the latency or the time that a correct update takes to
arrive to all the copies. Node failures and network partition are less common
but more dangerous since they derive in more complicated situations to solve,
if there is a solution. Users may be aware of this characteristic of the system
and may be able to live with it knowing that information will be repaired
soon enough. Or it can be more preferable that users are never aware that
incorrect behaviours indeed happen by masking them. Convergence among
copies is a guarantee that clients should count on and is desirable that a
system could provide it. Of course, normally, in these systems updates are
not indivisible and atomic transactions but just simple operations to change,
create or delete a value. This conception of a weakly consistent system
is given already in Oppen and Dalal [1983]. In this case, users are aware
that they will face with inconsistencies. But, what if there is a manner to
hide these incorrect behaviours and have the appearance that everything is
just working fine? Client-centric consistency models care about the client
perspective of the data, allowing the system consistency to be weaker and
sometimes not noticed. We can consider then two main kinds of consistency
in the system: the one perceived by the user and the one that actually the
system is working with. Of course, other consistency levels in an application
can be considered and exploited [Alvaro et al., 2013].

Up to this point, we have explained how to understand and define con-
sistency looking at the data changing in the server copies. But, what about

43

Chapter 4. User-centric consistency models

the clients or users that are connected to the system? How do they perceive
these dynamics in the data that they are accessing and, significantly less
commonly, modifying? This is the main idea of the user-centric consistency
models, just to focus on what the clients or users perceive from the data they
are managing [Terry et al., 1994]. Clients or users are allowed to access any
replica by means of a session and, additionally, to accomplish some combina-
tion of certain guarantees, the users will see -or think that they see- that the
application meets the consistency condition expected. The session concept
and the session guarantees will be explained in the following sections.

As we have seen in the previous chapter, stronger and naturally con-
vergent consistency models are more difficult to implement and heavier to
maintain due to synchronisation and the need of consensus and certain re-
strictions in the order of operations. On behalf of not allowing the user to
see what is really happening in the system, we could use some tricks to make
inconsistencies transparent to the user. Under those circumstances, if we are
able to make the user perceive or think that the system performs completely
well and without any problem like failures, inconsistency periods, network
partitions, upgradings, migration or whatever any other possible inconve-
nience would be a huge benefit. Consequently to use certain techniques to
mask inconveniences will not be a bad idea. They will allow to relax the sys-
tem consistency model, and hence get some benefits of weaker consistency
model management, making possible to solve these situations without giving
the impression that the system is indeed misbehaving or making something
different to serve the clients.

What is really interesting is that once these techniques are defined, it is
possible to use a more relaxed consistency model in the system. Therefore, we
can use a weaker consistency model such as FIFO or causal in the replicas and
the user will perceive that they are seeing things and system behaviour like if
they were working with a stronger convergent one. Of course, not only extra
mechanisms will be added for recovery and convergence of the data replicas,
but also availability or perceived consistency will be compromised sometimes.
The relaxed mechanisms typically comprise a gossip or mongering broadcast
algorithm to spread the updates, to remove the complexity of managing
transactions and use instead simple operations -write and read-, to keep
versions of the values as well as certain order in writings, reconciliation values
techniques (Thomas Write Rule could be the simplest one combined with
version values). These mentioned mechanisms shall not interfere nor affect
session guarantees and neither different sessions among them.

The chapter is divided as follows. First of all, we will explain the principal
conception that will grant that the guarantees explained in the following
sections may take place. Secondly, we will explain four session guarantees.

44 LPM-IUMTI-UPV

4.2. Session concept

Finally, we will show the principal implications that these concepts have in
implementing applications. It is important to highlight that the guarantees
and concepts explained below are complementary to the guarantees that a
regular or data-centric consistency model offers. Perhaps, in some cases,
small modifications to the original system could be needed, but minor ones.

4.2 Session concept

This concept is fundamental to understand and implement the user-centric
consistency models. A session is an abstraction for the sequence of read and
write operations performed during the execution of an application. It starts
once the client connects to one server and it ends, idealistically, when the
client has finished all the operations needed. All the interaction has been
logically performed with the same server during all the session. In this way
clients only see that their actions have a consistent enough behaviour in the
system, even if there are other clients accessing concurrently to the same
data or if they read and write from very likely to be inconsistent replicas.
Within the environment of a session the guarantees that are explained later
can take place. These are:

e Read Your Writes, read operations reflect previous writes.
e Monotonic Reads, successive reads reflect a non-decreasing set of writes.

o Writes Follows Reads, writes are propagated after reads on which they
depend.

e Monotonic Writes, writes are propagated after writes that logically
precede them.

Of course it is important to repeat that each Read or Write that a user
does goes directly to the same server under the session, but it can happen
that a connection could be lost due to any kind of network problem. In these
scenarios is convenient to retry the user reconnection to the same server, if
available. In the case the server is unreachable, then the next action is to
connect the user to a server that has the same state. Otherwise, the user
should start again all or part of the work with the new server. Thereupon the
client will realise that some failures have happened. The task of providing the
guarantees we just mention relies primarily on the session manager through
which all the reads and writes operations are serialised. It can be considered
part of the client stub that communicates with the replicas. For each session
it maintains two sets of write identifiers:

LPM-IUMTI-UPV 45

Chapter 4. User-centric consistency models

- read-set, is a set of write identifiers for the writes that are relevant for
the session reads.

- write-set, is a set of write identifiers for those writes performed in the
session.

We do not have to confuse sessions with transactions. Sessions do not
ensure atomicity nor serialisability. The real intention is to give the image
of a central database to the user, even if the client is working with different
and potentially inconsistent servers.

4.3 Session or read-write guarantees

In this part of the text we are going to describe in more detail the session
guarantees mentioned in the previous section. Of course, in a system using
client caching these guarantees can be applied. We have to consider that
depending on what the clients need to see in order to keep an appearance
of a strong consistent system while, in fact, the replica consistency is weak
indeed. Sometimes it will be necessary to make a combination of a couple
or more of them or it works just fine meeting only one guarantee. This is
possible thanks to the scope that the session provides to the communication,
i.e. writes and reads, between the server and the client. Considering DB(S;t)
as the ordered sequence of Writes that have been received by server S at or
before time t, the properties that can be assured in a session environment
are enunciated below.

4.3.1 Read Your Writes

Read Your Writes property arises from the fact that natural order of op-
erations for a user is to be able to read what they write in the very same
sequence. As long as the session lasts, clients will read the last value they
have updated. Specifically:

RYW guarantee If Read R follows Write W in a session and R is per-
formed at server S at time t, then W is included in DB(S,t).

Considering applications, reads within the session may see other writes
that are performed outside the session, since there may be other users per-
forming writes to other servers and these updates could be seen in the present
session and server. Thus, a user might perceive the interaction with the sys-
tem by other users. To sum up, any user will see her writes in the same
temporal order that the user has executed them and can also see other user
interactions with the system.

46 LPM-IUMTI-UPV

4.3. Session or read-write guarantees

4.3.2 Monotonic Reads

This guarantee tells us about the updating process of the system as it is
accessed by writes. The users can see the evolution of the system as they read
through time increasingly within the session. MR produces the impression to
the users that the system is growing, changing and working through time and
it does not go back to the past by showing stale or expired values for their
particular session. A write-set is said to be complete if it is the minimum
sequence of ordered writes that produces a given R when we perform R in
DB(S,t). Assuming that, the function RelevantWrites(S,t,R) returns the
smaller and unique write-set sequence that is complete for R. Now, we can
define formally MR as follows:

MR guarantee If Read R1 occurs before R2 in a session and R1 accesses
server S1 at time t1 and R2 accesses server S2 at time t2, then Rele-
vantWrites(S1,t1,R1) is a subset of DB(S2,t2).

That clearly tells us that the DB changes and grows through time and
it does not go back in time by showing past values. One interesting thing
about this guarantee is that if we design the client stub to achieve it, in a
system where the consistency data model is sequential will avoid and solve
the problem of inversions.

4.3.3 Writes Follow Reads

The Writes Follow Reads guarantee ensures that traditional write/read order
dependencies are preserved in the ordering of writes at all servers. This means
that in every copy, writes made during the session are ordered after any writes
whose effects were seen by previous reads in the session.

WPEFR guarantee If Read R1 precedes Write W2 in a session and RI1 is
performed at server S1 at time t1, then, for any server S2, if W2 is in
DB(S2) then any W1 in RelevantWrites(S1,t1,R1) is also in DB(S2)
and WriteOrder(W1, W2).

At first, it looks familiar to causal consistency, but from the user point
of view. Besides, it also implies to see the write operations from other users
outside the session. The user of a particular session can observe the writes
of other users with their own sessions.

This guarantee can be relaxed into two constraints in write operations. A
constraint on write order that ensures that a write properly follows previous
relevant writes in the global ordering that all replicas will eventually reflect.

LPM-IUMTI-UPV 47

Chapter 4. User-centric consistency models

And another one on propagation that ensures that all servers (and clients)
only see a write after they have seen all the previous writes on which it
depends. Formally:

WFRO If Read R1 precedes Write W2 in a session and R1 is performed at
server S1 at time t1, then WriteOrder(W1,W2) for any W1 in Rele-
vant Writes(S1,t1,R1).

WEFRP If Read R1 precedes Write W2 in a session and R1 is performed at
server S1 at time t1, then, for any Server S2, if W2 is in DB(S2) then
any W1 in RelevantWrites(S1,t1,R1) is also in DB(S2).

4.3.4 Monotonic Writes

This guarantee says that a write is only updated in the server if the copy
includes all the previous session writes. Also, it implies the user of the current
session and other users from outside the session.

MW guarantee If Write W1 precedes Write W2 in a session, then, for
any server S2, if W2 in DB(S2) then W1 is also in DB(S2) and Write-
Order(W1,W2).

Thanks to this guarantee, the user session can be sure of the order of
two given writes. It also affects to users outside the session. Obviously, this
guarantee is harder to keep since involves coordination among replicas and
users to agree in a write order. In weak systems, write conflict orders can
be resolved after the users may perceive them. It is a decision of the pro-
grammer to allow clients to see these temporal inconsistencies. The more
the programmer wants the users not to realise that something is wrong, the
more difficult will be to find servers that are enough up to date to be ac-
cessed. Thus, affecting availability. One more time we see that to keep strong
guarantees about consistency implies a degradation in system availability.

4.4 Conclusions

The concept of session and four guarantees have been presented in this chap-
ter, among the description of an example of a system that implements a
weak data consistency model, causal consistency in this case. Furthermore,
the mechanisms applied to spread the updates are the so called mongering or
gossip, which guarantees that all the replicas will eventually receive all the
updates. Thus, contributing to the system convergence. However, some ex-
tra mechanisms are added to the system to solve data conflicts, but they can

48 LPM-IUMTI-UPV

4.4. Conclusions

be implemented using the communication mechanism or just with a simple
solution like version vectors. One could develop extra guarantees or modifi-
cations of the presented ones in convenience of the application or usability or
the guarantees that we wish to offer. As it has been said before, they can be
used to help to mask other kind of failures in weak and stronger consistent
systems.

On the one hand, what we are obtaining with this approximation is a
more relaxed consistency mechanism for the whole system, since the user
is not aware of what is happening in the servers. On the other hand, it
will complicate the implementation for the programmers and it will exist
the problem that users could realise some inconsistencies. Despite of these
withdrawals, at the end, a solution will be found for it, if the application
really needs to care about it.

As we have seen the solution to give the appearance of a central and
unique image from the user point of view, we have realised that if we wanted
more similar to sequential consistency, more difficult was to implement it
and less servers or copies we could access to have this look. There is, in
fact, a trade off between availability and consistency as well at client side.
However, at least, we are able to manage more perfectly, more transparently
weak consistency models from the data point of view, like fifo or causal.

It helps to complete the consistency models to achieve the global apparent
consistency in the system, that is, the consistency level that we want the users
to see or think that they are working with. Besides, with these guarantees is
possible to solve or alleviate inconsistencies or consequences of write conflicts
with models that not imply a global consensus decision for the operation
order. It is possible to fake it somehow by combining the consistency model
applied in data replicas and some of the guarantees explained in this chapter.
The author proposes that more guarantees can be defined as it may arise from
the application used in combination with the data file replicated system used
in Terry et al. [1994]. At this moment, the guarantees are presented to
work with a system that clients are mobile and can be offline most of the
time. Nowadays, with the huge growing in numbers of nodes and users of
the Internet, it is common sense to use them for improving the scalability
and availability of the system by relaxing data consistency model.

If we delay the replicated data updates, the techniques to keep data con-
sistent will have less influence in availability and obtain better performance
and higher scalability. We do not need take into account a strict coordination
(synchronisation) among replicas in order to have in all of them the same
value. In this scenario it may happen that a user reads an old value for a
variable after writing a new value. A simple solution is just to attach a client
or user to one server or replica by means of a session. Other thing that is in-

LPM-IUMTI-UPV 49

Chapter 4. User-centric consistency models

teresting in the user-centric consistency model is that we can combine some
of the four guarantees depending on what the client would tolerate as an
inconsistency in what it sees. For some applications is not really important
if the client sees a non correct order of updates, or if the result changes. We
can think about an e-mail client. We can connect to some server, to erase
some emails. Then, connect from another mobile device and not perceive
the changes we have made in the previous session. It’s a matter of time,
if the designer decides so, that it is not important to what replica we are
asking for information. What it matters is that eventually we will be able
to see the correct value and also if the user sees a logical and monotonic
ordering of data throughout time. That is, all the replicas will converge to
the same value, eventually. It is not important what happened during the
time the client has seen inconsistencies due to several reasons (delay propa-
gation, partition in the system network,...). What we obtain is not to annoy
the users with inconsistencies allowing them to continue working using the
system and, besides, we have a mask wall to achieve consistent and correct
behaviour. In the end, the client finally sees the correct value and perceives
a correct behaviour. This new guarantee is considered a consistency model
by itself. It is the so called eventual consistency. We will talk about it in
chapter 5. The application of this concept is broadly used in modern cloud
systems. Sacrificing consistent order and timing of data allows to remove
several concurrency and version control in the system, making it faster and
able to scale at higher rates. This “‘trick”’ of using apparent consistency
with the guarantees is key to modern distributed system, or not so modern
since Terry wrote these articles in the earlier 90’s and the cloud revolution
started more than ten years later. The main explanation for the situation
that at the beginning of the first decade of this century is broadly used is
the huge impact of the Internet as a domestic facility. Nowadays, almost all
machines used by humans can be connected to the Internet. Therefore, the
need for techniques that helps to manage with such a huge amount of clients
and users of any kind (people, electrical appliances, wearables...) and the
study of how inconsistencies can be perceived or repaired without the degra-
dation of availability or application performance is one of the main research
areas in current Distributed Systems.

50 LPM-IUMTI-UPV

CHAPTER

5)

Eventual Consistency

“How often have I said to you that when you
have eliminated the impossible, whatever
remains, however improbable, must be the
truth?”

— Sir Arthur Conan Doyle

Eventual consistency has become a famous name last years as it has been
used as the main and most known solution to CAP theorem. The recreation
of this concept has been evolving and being understood and called with some
variations. Firstly used in systems operational oriented, it has been studied
to apply it to the transactional environment [Burckhardt et al., 2012]. Prac-
tically, there is no complete formal definition for this so called consistency
model. There have been some approximations, but they do not cover all
cases that the wider definition of it expresses.

In this chapter we argue that eventual consistency is not a consistency
model by itself but it is indeed a condition or guarantee that lots of replicated
applications will require for a correct performance. If we consider the work
of Steinke and Nutt that we have been visiting and commenting along the
text since chapter 3, eventual consistency could be considered as another
property to define consistency models. It has had an enormous influence in
the designing of cloud systems since such systems need to be highly scalable,
elastic and tolerable to network partitions.

In the following section we will describe the most remarkable definitions
of eventual consistency that we have found through the literature, even when
it was not named as eventual. However, the idea keeps the same condition
through time:

“In the absence of updates, in a quiescent state of the system
where all updates have been propagated, all reads will return the
same value or all the replicas will share the same state.”

Just following those definitions, we will present a study of some formal
definitions for it. After that, we explain three representative systems that

o1

Chapter 5. Eventual Consistency

implement eventual consistency and comment the different approaches and
techniques that they have used to construct it. Then, the following section is
a collection of the most common mechanisms and some proposed techniques
that currently are being developed to ensure that a system is eventual con-
sistent. At this point, when all the basis of eventual consistency is explained,
we present a discussion comparing this model with the other consistency mo-
dels, using the classification and properties defined by Steinke explained in
section 3.2. Finally, we summarise all the contents of this chapter and we
illustrate the consequences that this consistency model has had in modern
-and not so modern- distributed systems.

5.1 Transparency

An important goal of a distributed system is to hide the fact that its pro-
cesses and resources are physically distributed across multiple computers. A
distributed system that is able to present itself to users and applications as
if it were only a single computer system is said to be transparent. On one
hand, replication transparency or that a replicated system acts like if it is
just a single node is a main goal. On the other hand, could be eventual con-
sistency the key to the replication transparency or is indeed the mechanism
to achieve it?

5.2 Definitions of Eventual Consistency

First of all, in this section we will write the informal definitions found in
the known literature presented here. Almost all of them consider eventual
consistency to be a consistency model. Others, say to be a desirable property,
as explained just after the definitions. In third place, we present some formal
definitions.

5.2.1 Eventual Consistency as a consistency model

The idea of an eventual consistency model appears already in mid seventies,
by 1975. It is not named with such a name, but the main concept is captured
in Johnson and Thomas [1975]. The RFC recommends to guarantee the
copies of the data to be “consistent” with each other. The meaning of this
is that given a cessation of update activity to any entry, and enough time
for each DBMP (database management process) to communicate with all
other DBMPs, then the state of that entry (its existence and value) will be
identical in all copies of the database. With this definition we can already

52 LPM-IUMTI-UPV

5.2. Definitions of Eventual Consistency

glimpse the essence of the lastest definitions of eventual consistency as we will
see through this section. The author also warned about the impossibility or
difficulties to achieve an identical state all the times in all the replicas given
the implicit delay in communications between the copies. Difficulties that
will grow with time, number of operations and number of replicas. In this
definition, convergence of data is an important feature to keep replication
transparency. If users realise that can see a past value, then they may know
that there is a replicated server.

The oldest definition has been given in the introduction of this section,
just above. For a while, researchers will talk and theorise about eventual
consistency without giving it that name. They describe more a system that
is wished to be convergent or coherent (do not confuse with Coherent Con-
sistency from 3.1.5).

In Kawell et al. [1988] appears what might be the first time eventual con-
sistency is mentioned in literature. It tells about composing systems and
the difficulties of keeping them connected thus affecting data consistency.
It describes a system called Notes, suggesting to abandon atomic updating,
synchronisation and consensus of replicas to allow the system working in
case of network partition. Update propagation is performed in background
asynchronously. By then, the author already explains that clients may not
perceive any inconsistency and, in case it would happen, the clients them-
selves would notify the incidence to the system administrators. Quoting the
exact text:

Notes replication ensures eventual consistency of the doc-
uments in all replicas: changes made to one copy eventually mi-
grate to all. If all update activity stops, after a period of time
all replicas of the database will converge to be logically equivalent:
each copy of the database will contain, in a predictable order, the
same documents; replicas of each document will contain the same
fields. In other words, a program cannot detect the difference be-
tween replicas through the document manager programmatic in-
terface.

In a project named Bayou, Terry et al. [1994] say that weak consistency,
considered as the one that allows the data replicas to vary and be accessed
in the meanwhile, is implemented. Besides, it also desires for Bayou, and
practical systems, for the replicas to be convergent when all updates are
propagated and no more changes are generated. Literally: “Practical sys-
tems generally desire eventual consistency in which servers converge towards
identical database copies in the absence of updates. It relies on two proper-
ties: total propagation and consistent ordering.”

LPM-IUMTI-UPV 53

Chapter 5. Eventual Consistency

Saito and Shapiro [2005] informally say that eventual consistency guar-
antees only that the state of replicas will eventually converge, allowing in-
consistencies to be observed by applications or users in optimistic replicated
systems, where availability is the most important goal. They consider it to
be the weakest level of consistency considering the degree of replica block-
ing accesses when some restrictions are not met, named bounded divergence.
In the other segment, the stronger consistency, will be single-copy. To im-
plement an optimistic replicated system that ensures eventual consistency,
Saito proposes that it will be necessary to compute operation ordering while
identifying and solving conflicts and committing operations.

About Vogels definition [Vogels, 2009], considered a form of weak consis-
tency, it is remarkable two aspects of it. The first, his definition reminds to a
a guarantee for the users, similar to the ones described by Terry et al. [1994].
Quoting: “the storage system guarantees that if no new updates are made
to the object, eventually all accesses will return the last updated value.”.
This definition focuses more in what the users perceive than what is really
happening in the system. As an example, let us imagine a situation where
a network partition has taken place. To simplify, we are going to consider
only two partitions of the system A and B, but it could be more than just
two. There is a client who accesses repeatedly to the same data in partition
A. The very same data is being modified meanwhile in partition B by other
client once and then it stops. The client in partition A will read all the time
the same value for that precise data, which is different than the value in
the other partition and there are no more updates to that data. Hence, the
system has not reached convergence, but the client in partition A is reading
all the time the same value like the definition of eventual consistency given
by the author. After that, when the partition heals, the data will be updated
and converged. The second interesting aspect is the definition of what the
author calls inconsistency window, and defined as how long would the data
be stale until it gets its last or correct value. For the good behaviour of
the system it is very important to calculate or speculate the maximum size
of the inconsistency window, considering that no failures occur during the
process, using factors like communication delays or latency, system load or
the number of nodes or replicas involved in the system.

However, Vogels’ definition does not meet the requirement for the def-
inition enunciated by Terry et al. [1994] and others. It certainly remains
to the consistency perceived by the user explained in chapter 4, because it
focuses more in the returned value to the client instead of the state of the
system. Certainly, we could differentiate this definition from the others and
highlight it as client centric eventual consistency. It is not so important that
data finally have the same value, that replicas converge, but to make the

54 LPM-IUMTI-UPV

5.2. Definitions of Eventual Consistency

users think that they are working with correct data. One could ask what it
happens if due to this new kind of inconsistency, something goes wrong and
the resulting service of the client fails. Vogels proposes to add what is called
the human factor, in other words, to allow the users and the representative
agent of the service that the system provides to communicate and solve the
situation. The perfect image or behaviour of the system is not so important
and users are supposed to tolerate this kind of situations. Systems may have
become more modern, so the society too. People are more used to work with
computers and devices on the internet constantly. Therefore, it is not so bad
idea to let the users to inform to the administrators about a misbehaviour of
the system. This is another fundamental change on the way systems evolve,
implying more the clients in the process.

In Fekete and Ramamritham [2010] eventual consistency is defined as a
consistency model that is tolerant to network system partitions allowing the
system to be highly available. The system can work with what the authors
call “disconnected operations”. That is, once the client has access to one
node, even in the environment of a partition, the client is able to continue
working with the connected server. Once the possible partition is healed,
the node only has to send the updates using the gossip protocol. If con-
flicts appear, then mechanisms implemented to solve them will be applied.
The authors define eventual consistency explaining the main implementa-
tion techniques, i.e., to allow to any client to access to any replica reachable
(update anywhere, anytime) and then propagate the updates in the back-
ground using gossip communication protocols. Considering that not a lot
of operation are commutative or idempotent and no sequencer seems to be
implemented, a reordering of the operations applied to the replicas will be
necessary to solve conflicts. This can imply to undo the effect of certain
conflicted operations and even some operation could have not been applied.
A control of the time that the replica values may differ is also commented as
bounded divergence, which reminds to the inconsistency window defined by
Vogels. Once the order of the operation is fixed, the name of the sequence
of the correct operation or prefix is called “agreed past”. Thus, all repli-
cas finally have agreed pasts to all the executions that are equivalent to a
sequential order of operations. Besides, it talks about “session properties”
to complement the mechanisms mentioned before. Those properties are the
session guarantees explained in chapter 4. The authors also consider causal
consistency (see section 3.1.3) to be a restrictive implementation of eventual
consistency since it adds the causal relation among operations to partially or-
der operations rather than consider it a different consistency model. We can
start to suspect that eventual consistency is like some kind of complement
or characteristic of certain consistency models and not a model instead.

LPM-IUMTI-UPV 55

Chapter 5. Eventual Consistency

Similar to Saito’s definition, Shapiro and Kemme [2009] defines what we
could call strong eventual consistency. Informally, it requires that all replicas
of an object will eventually reach the same, correct, final value, assuming that
no new updates are submitted to the object. Like a standard definition of a
consistency model, they define it as a sequence partially ordered of operation
schedule for each process that belongs to the system. The particularity of
these sequences is that they have the property of being equivalent and not
necessarily sequential, denoting the use of commutative operations that do
not affect to the final result. Thus, all the data is convergent. More exactly,
assuming that all replicas have the same initial state, they define eventual
consistency of a replicated object with four conditions that have not to be
violated in any situation:

e There is a prefix of the schedule S¥ that is state-equivalent to a prefix
of the schedule S?, of any other node n’ holding a replica of x. Such a
prefix is called a committed prefix of SZ.

e The committed prefix of S¥ grows monotonically through time, i.e., the
set of operations and their relative order remains unchanged.

e For every operation w; submitted by a user, either w; or w; eventually
appears in the committed prefix of S* (but not both, and not more
than once)

e An operation w; in the committed prefix satisfies all its preconditions
(e.g., the state of the object immediately before the execution of the
operation fulfils certain conditions).

Last definition we will consider in this section is the one made by Bailis
and Ghodsi [2013]. If no additional updates are made to a given data item,
all reads to that item will eventually return the same value. Of course, until
that moment of convergence, read operations may return non correct values
and the system will be still eventually consistent. The moment of no more
updates are done will arrive at some point in the future thus, the system still
is eventually consistent. Authors defend that eventual consistency is more
about a liveness property, that is, “something good eventually happens”.
However, eventual consistency definition does not say anything about safety
property meaning “nothing bad happens”. This part of the equation is the
responsibility of the consistency model chosen for the system and the access
restrictions that specify when data is not correct.

If we consider this last definition, the convergence property explained
in Gray et al. [1996], the technical report of Mahajan et al. [2011], work

56 LPM-IUMTI-UPV

5.3. Implementation and techniques

that considers convergence as an aspect differentiated from consistency and
even Fekete and Ramamritham [2010] says openly that we are treating with
a liveness property instead of a consistency model. In addition to those
works, we add our envision that eventual consistency is a property that some
consistency models regularly accomplish (see section 3.4) when their rules are
respected. In this situation, convergence is reached. To understand it better,
we have used Steinke and Nutt unified theory of consistency models and
inferred that those models that have at least GDO as a guarantee granted,
the system will be naturally convergent.

5.2.2 Eventual Consistency and a formal definition

Almost all the formal definitions that we have found are based on the def-
inition of a prefiz of operations that all replicas have to agree in order to
converge. Following directly this approach we have papers like Saito and
Shapiro [2005], Shapiro and Kemme [2009] among others. Fekete and Ra-
mamritham [2010] calls it “agreed past”. The problem with this style of
definition is that they leave out situations that the replica may not share
the same prefix but they will have the same value by using a reconciliation
technique that does not modify the prefix. Even Bosneag and Brockmeyer
[2002], that presents a formal definition using an algorithmic approach, still
considers history of operations taking as the principal history the master’s
replica, which is similar to the concept of prefix. In Bouajjani et al. [2014] a
formal verification of eventual consistency is presented, but only in optimistic
replicated environments. As we will see in the following section, optimistic
replication (see section 2.4.1) is one of the most used techniques to implement
a highly scalable system.

As far as we have presented here, no formal model seems to have enough
expressivity to formally define eventual consistency. If the rules presented
in the consistency model imply data convergence, the definition of eventual
consistency is implicit in those rules. If it does not imply data convergence,
we will need to force with extra techniques and reconciliation mechanisms
that will help with data convergence as well as recovery from partitions and
other failures that come with data or updates loss.

5.3 Implementation and techniques
In this section we will present the most common tools, mechanisms, imple-

mentation, replication and reconciliation techniques implemented to achieve
data convergence or eventual consistency. The majority of the mechanisms

LPM-IUMTI-UPV 57

Chapter 5. Eventual Consistency

that we talk about are taken mainly from Bernstein and Das [2013], Kawell
et al. [1988], Terry et al. [1994], Vogels [2009] and F.D. Munoz-Escoi and
Esparza-Peidro [2011].

First of all, mention that the most replication algorithm used is optimistic
replication. Broadly explained in Saito and Shapiro [2005], its basic mecha-
nism is to spread the update to the other nodes or replicas of the system at
the same time that the interaction with the client is taking place, instead of
confirming that all replicas have been updated before answering the client.
It is a particular type of passive replication model, but with the approach of
update anywhere anytime. Any server is accessed by a client, not necessarily
the master, and performs the tasks that the client requires. In the mean-
while, updates are propagated using background gossip like communication
protocols. Of course, choosing only one node to work with can be dangerous
for durability and some implementations use at least a minimum number of
nodes to perform the update, named quorum.

As we have shown in chapter 3, section 3.4, the consistency models that
require all these mechanisms are those that are not naturally convergent. As
we checked in the lattice 3.9, causal and PRAM models are those considered
fast and also not convergent. The most used model is the causal one. To
solve conflict situations, there are several ways, like Thomas write rule, to use
commutativity when possible, to study mergeable situations (development of
CRDTs [Shapiro et al., 2011]).

The system that has been very famous that implements a subset of these
techniques is Dynamo [DeCandia et al., 2007]. Inspired in a P2P system
called Chord ([Stoica et al., 2003]), it implements a highly scalable system
that uses an approach of causal consistency by means of versioning and con-
flict resolution to ensure eventual consistency.

5.4 Conclusions

As shown along the chapter, eventual consistency has been tried to be defined
as a consistency model but, as we can see, since defined in Johnson and
Thomas [1975], it is is a characteristic desirable for a replicated system.
But it can vary depending on the necessities or requirements of the system.
however it is indeed a liveness condition desirable if we want convergent data.
So, as shown with Steinke properties, if a data centric consistency model
meets GDO or GAO properties, it will converge by itself. Otherwise, extra
mechanisms have to be added in order to achieve convergence, if desired.
Classical literature explains that strong consistency usually implies strong
synchronisation, like global synchronisation. Thus, it is obvious that to scale

58 LPM-IUMTI-UPV

5.4. Conclusions

a strong consistent system will be complicated and will have a heavy be-
haviour and long response time since it requires the synchronisation of all
the nodes of the system. That is the main reason that techniques to achieve
the liveness property of convergence or eventual consistency typically leave
the synchronisation part of the updating replica process for later, for another
moment. Making not mandatory to update everywhere as fast as possible
but just when is needed and, if not yet done, to give the impression that
it is synchronised or to develop a service that does not require this kind of
behaviour and can work with a more relaxed one.

Eventual consistency is, informally speaking, to allow our system to be
inconsistent for some period of time giving the guarantee that will arrive to
a unique image data and not worrying if some inconsistencies are perceived
during this time or inconsistency window because they will be treated or
masked by some techniques, such as client centric consistency guarantees
and trusting the reconciliation techniques that have been implemented for
it. We could say that we do not take the advise of “prevention rather than
cure”, which be a pessimistic vision of the behaviour of the system, and do
“instead of preventing, treating”. This is the price we pay to obtain wide
area distributed systems and a solution to manage CAP Theorem.

LPM-IUMTI-UPV 59

CHAPTER

Conclusions

“It is the time you have wasted for your rose
that makes your rose so important.”

— Antoine de Saint-Exupéry, The Little Prince

We have presented the problematic showed with the CAP theorem in
chapter 1 and propose eventual consistency as a particular solution to solve or
to live with this situation in case of partitions. After some common knowledge
about distributed systems in chapter 2, we have defined the data oriented
consistency models and given a formalism that helps to compare consistency
models among them. From this chapter, we have inferred that the consistency
mode chosen can affect to the system in several manners, being the most
remarkable:

- The programming style, more synchronous or asynchronous.
- Partition tolerance.
- Reconciliation techniques and conflict resolution.

- Data convergence, also understood as if the system will be eventually
consistent.

- System scalability.
- Availability.
- The system latency.

Therefore, it is extremely important to choose wisely the kind of consis-
tency model we want in our distributed application since it will affect in all
previous characteristics and others that we could have leave out of the list.

From the reasoning about how synchronisation restricts systems be-
haviour and the time that a value is allowed to be stale, which implies to
have synchronisation barriers, we can envision that what makes a consistency

61

Chapter 6. Conclusions

model, client or data oriented, really strong is in function of how constrained
these time gaps or periods are. The stricter the operations of updating are,
the more synchronised the system is. Just with having a look at the strongest
consistency model, that is the strict or atomic model, that obliges to the op-
eration to be updated automatically, without any latency. So the key to let
scalability to arise was to delay the synchronisation moment of the correct
value of replicated data to the last moment, or to the really needed moment
(it is really necessary to have all values of all replicas updated if they are not
going to be accessed or used?). This situation directly affects to the data
consistency but it does not say anything about if data will be eventually
consistent or coherent. We have presented here Steinke and Nutt formalism
to define consistency models and conclude that only the models that respect
GAO or GDO properties will be automatically eventually consistent. For
the other models that do not follow one or the other property, will not be
naturally convergent and extra healing mechanisms will need to be added to
the systems. Unfortunately, the models remaining are those called fast con-
sistency models, that is, models that can each node belonging to the system
can make decisions about operations without needing extra information or
collaboration, which implies normally synchronisation

We have defended that to have a scalable system, some times stale data
may be perceived by the users while mechanisms to convergence are working.
A way to mask the behaviour we want the users to perceive are the session
guarantees and the concept of session presented in chapter 4. However, it is
not so terrible that sometimes users see this malfunctioning of the system if
they are said that such behaviour is not perceived as wrong.

Finally, in chapter 5, some of the most known definitions for eventual
consistency have been presented, ordered in time. We conclude that eventual
consistency is not in fact a consistency model by itself, like the ones presented
in chapter 3. It does not follow the same rules to be defined and we argued
that it is a liveness property of the system. From it we interpret that, if we
want a highly scalable distributed system to perform properly, designers have
to ensure that the property of convergence or eventual consistency is finally
achieved. Having this in mind, eventual consistency can be understood as a
set of techniques to solve or live with the CAP Theorem situation.

Future work

From this work, two interesting lines are suggested to be researched in a
future work. The first, to research on looking for a formal definition of even-
tual consistency using some sort of temporal logic or a kind of algebra that is
expressive enough to show time in the definition. Secondly, other interesting

62 LPM-IUMTI-UPV

point to investigate is to prove formally what is the basic consistency model
that arises from each communication protocol without any extra mechanisms.

LPM-IUMTI-UPV 63

Bibliography

Ahamad, M., Bazzi, R. A., John, R., Kohli, P., and Neiger, G. (1993). The
power of processor consistency. In Proceedings of the Fifth Annual ACM

Symposium on Parallel Algorithms and Architectures, SPAA '93, pages 251—
260, New York, NY, USA. ACM.

Alvaro, P., Bailis, P., Conway, N., and Hellerstein, J. M. (2013). Consistency
without borders. In SoCC; page 23.

Amir, Y., Moser, L. E., Melliar-Smith, P. M., Agarwal, D. A., and Ciarfella,
P. (1995). The totem single-ring ordering and membership protocol. ACM
Trans. Comput. Syst., 13(4):311-342.

Attiya, H. and Friedman, R. (1996). Limitations of fast consistency condi-
tions for distributed shared memories. Inf. Process. Lett., 57(5):243-248.

Bailis, P. and Ghodsi, A. (2013). Eventual consistency today: limitations,
extensions, and beyond. Commun. ACM, 56(5):55-63.

Bernstein, P. A. and Das, S. (2013). Rethinking eventual consistency. In
SIGMOD Conference, pages 923-928.

Birman, K. P. (1986). ISIS: a system for fault-tolerant distributed comput-
ing. Technical report, Cornell University, Department of Computer Science.

Bosneag, A.-M. and Brockmeyer, M. (2002). A formal model for eventual
consistency semantics. In TASTED PDCS, pages 204-209.

Bouajjani, A., Enea, C., and Hamza, J. (2014). Verifying eventual consis-
tency of optimistic replication systems. In POPL, pages 285-296.

Brewer, E. A. (2000). Towards robust distributed systems (abstract). In
Proceedings of the Nineteenth Annual ACM Symposium on Principles of
Distributed Computing, PODC 00, pages 7—, New York, NY, USA. ACM.

65

Bibliography

Budhiraja, N., Marzullo, K., Schneider, F. B., and Toueg, S. (1992). Dis-
tributed algorithms, 6th international workshop, wdag 92, haifa, israel,
november 2-4, 1992, proceedings. In WDAG, pages 362-378.

Burckhardt, S., Leijen, D., Fahndrich, M., and Sagiv, M. (2012). Eventually
consistent transactions. In ESOP, pages 67-86.

Cantin, J. F., Lipasti, M. H., and Smith, J. E. (2005). The complexity of
verifying memory coherence and consistency. IEEE Trans. Parallel Distrib.

Syst., 16(7):663-671.

Chockler, G., Keidar, I., and Vitenberg, R. (2001). Group communication
specifications: a comprehensive study. ACM Comput. Surv., 33(4):427-469.

Cholvi, V. and Bernabéu, J. (2004). Relationships between memory models.
Inf. Process. Lett., 90(2):53-58.

Cooper, B. F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon,
P., Jacobsen, H.-A., Puz, N., Weaver, D., and Yerneni, R. (2008). Pnuts:
Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1(2):1277-
1288.

Davidson, S. B., Garcia-Molina, H., and Skeen, D. (1985). Consistency in
partitioned networks. ACM Comput. Surv., 17(3):341-370.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A.,
Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels, W. (2007). Dy-
namo: amazon’s highly available key-value store. In Bressoud, T. C. and
Kaashoek, M. F., editors, SOSP, pages 205-220. ACM.

Demers, A. J., Greene, D. H., Hauser, C., Irish, W., Larson, J., Shenker,
S., Sturgis, H. E., Swinehart, D. C., and Terry, D. B. (1987). Epidemic
algorithms for replicated database maintenance. In PODC| pages 1-12.

Défago, X., Schiper, A., and Sergent, N. (1998). Semi-passive replication.
In SRDS, pages 43-50.

F.D. Munoz-Escoi, J.R. Garcia-Escriva, M. P.-L.. and Esparza-Peidro, J.
(2011). Managing Scalable Persistent Data. Technical report, Institut Uni-
versitari Mixt Tecologic d'Informatica, Universitat Politecnica de Valencia.

Fekete, A. D. and Ramamritham, K. (2010). Consistency models for repli-
cated data. In Replication, pages 1-17.

66 LPM-IUMTI-UPV

Bibliography

Fischer, M. J., Lynch, N. A., and Paterson, M. (1985). Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374-382.

Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P. B., Gupta, A., and
Hennessy, J. L. (1990). Memory consistency and event ordering in scalable
shared-memory multiprocessors. In ISCA, pages 15—-26.

Gilbert, S. and Lynch, N. A. (2002). Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT News,
33(2):51-59.

Goodman, J. R. (1989). Cache consistency and sequential consistency. Tech-
nical report, IEEE Scalable Coherent Interface Working Group.

Gray, J., Helland, P., O’Neil, P. E., and Shasha, D. (1996). The dangers
of replication and a solution. In Jagadish, H. V. and Mumick, I. S., edi-
tors, Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, Montreal, Quebec, Canada, June 4-6, 1996, pages
173-182. ACM Press.

Herlihy, M. and Wing, J. M. (1990). Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463-492.

Homburg, P., van Steen, M., and Tanenbaum, A. S. (1996). An architecture
for a wide area distributed system. In ACM SIGOPS European Workshop,
pages 75-82.

Hutto, P. W. and Ahamad, M. (1990). Slow memory: Weakening consis-
tency to enchance concurrency in distributed shared memories. In ICDCS;
pages 302-309.

Johnson, P. and Thomas, R. (1975). The maintenance of duplicate
databases. RFC 677.

Kawell, Jr., L., Beckhardt, S., Halvorsen, T., Ozzie, R., and Greif, 1. (1988).
Replicated document management in a group communication system. In

Proceedings of the 1988 ACM Conference on Computer-supported Coopera-
tive Work, CSCW ’88, pages 395—. ACM.

Kopetz, H. and Verissimo, P. (1993). Distributed Systems, chapter Real
Time and Dependability Concepts, pages 411-444. Volume 1 of Mullender
[1993], second edition edition.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558-565.

LPM-IUMTI-UPV 67

Bibliography

Lamport, L. (1979). How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Computers, 28(9):690-691.

Lamport, L. (1986a). The mutual exclusion problem: partii - statement and
solutions. J. ACM, 33(2):327-348.

Lamport, L. (1986b). On interprocess communication. part i: Basic formal-
ism. Distributed Computing, 1(2):77-85.

Mahajan, P.,; Alvisi, L., and Dahlin, M. (2011). Consistency, availability,
convergence. Technical Report TR-11-22, Computer Science Department,
University of Texas at Austin.

Mosberger, D. (1993). Memory consistency models. Operating Systems
Review, 27(1):18-26.

Mullender, S., editor (1993). Distributed Systems (2Nd Ed.). ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA.

Oppen, D. C. and Dalal, Y. K. (1983). The clearinghouse: A decentralized
agent for locating named objects in a distributed environment. ACM Trans.
Inf. Syst., 1(3).

Powell, D. (1993). Distributed fault tolerance - lessons learned from delta-4.
In Hardware and Software Architectures for Fault Tolerance, pages 199-217.

R.J. Lipton, J. S. (1988). PRAM: A scalable shared memory. Technical
report, Princeton University.

Saito, Y. and Shapiro, M. (2005). Optimistic replication. ACM Comput.
Surv., 37(1):42-81.

Schneider, F. B. (1990). Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Comput. Surv., 22(4):299-319.

Schneider, F. B. (1993). Distributed Systems, chapter What Good Are
Models and What Models Are Good, pages 17-26. Volume 1 of Mullender
[1993], second edition edition.

Shapiro, M. and Kemme, B. (2009). Eventual consistency. In Liu, L. and
Ozsu, M. T., editors, Encyclopedia of Database Systems, pages 1071-1072.
Springer US.

Shapiro, M., Preguiga, N. M., Baquero, C., and Zawirski, M. (2011). Con-
vergent and commutative replicated data types. Bulletin of the FATCS,
104:67-88.

68 LPM-IUMTI-UPV

Bibliography

Steinke, R. C. and Nutt, G. J. (2004). A unified theory of shared memory
consistency. J. ACM, 51(5):800-849.

Stoica, 1., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F.,
Dabek, F., and Balakrishnan, H. (2003). Chord: a scalable peer-to-
peer lookup protocol for internet applications. IEEE/ACM Trans. Netw.,
11(1):17-32.

Tanenbaum, A. S. and van Steen, M. (2007). Distributed systems - principles
and paradigms (2. ed.). Pearson Education.

Terry, D. B., Demers, A. J., Petersen, K., Spreitzer, M., Theimer, M., and
Welch, B. B. (1994). Session guarantees for weakly consistent replicated
data. In PDIS, pages 140-149.

Vogels, W. (2009). Eventually consistent. Commun. ACM, 52(1):40-44.

LPM-IUMTI-UPV 69

	Introduction
	CAP Theorem
	Consequences of the CAP Theorem
	Outline

	Replication
	Introduction
	Distributed Systems. An explanation for features and characteristics
	Synchronisation
	Fault-Tolerance
	Consistency in replicated systems
	Connectivity loss
	Dependability and scalability

	Diffusion Communication Protocols
	Classification

	Replication models
	Passive replication model
	Active replication model
	Semi-passive and semi-active replication models

	Conclusions

	Data-centric consistency models
	Introduction
	Strict consistency
	Sequential consistency
	Causal consistency
	FIFO consistency
	Cache consistency
	Processor consistency
	Other consistency models

	Unified Theories of Shared Memory Consistency
	Considering implementation aspects
	Conclusions

	User-centric consistency models
	Introduction
	Session concept
	Session or read-write guarantees
	Read Your Writes
	Monotonic Reads
	Writes Follow Reads
	Monotonic Writes

	Conclusions

	Eventual Consistency
	Transparency
	Definitions of Eventual Consistency
	Eventual Consistency as a consistency model
	Eventual Consistency and a formal definition

	Implementation and techniques
	Conclusions

	Conclusions

