RJDBC: A SIMPLE DATABASE REPLICATION ENGINE*

Javier Esparza Peidro, Francesc D. Muiioz-Escof, Luis Irtin-Briz, Josep M. Bernabéu-Auban
Instituto Tecnoldgico de Informdtica
Universidad Politécnica de Valencia
46071 Valencia, SPAIN
Email: {jesparza, fimunyoz, lirun, josep} @iti.upv.es

Key words:

Abstract:

Replication, fault tolerance, reliability, distributed systems, databases, middleware, systems integration

Providing fault tolerant services is a key question among many services manufacturers. Thus, enterprises

usually acquire complex and expensive replication engines. This paper offers an interesting choice to orga-
nizations which can not afford such costs. RIDBC stands for a simple, easy to install middleware, placed
between the application and the database management system, intercepting all database operations and for-
warding them among all the replicas of the system. However, from the point of view of the application, the
database management system is accessed directly, so that RIDBC is able to supply replication capabilities in
a transparent way. Such solution provides acceptable results in clustered configurations. This paper describes
the architecture of the solution and some significant results.

1 INTRODUCTION

Reliable systems are becoming more and more
valuable nowadays. At present, customers demand
quality services and unavailability or data losses due
to unexpected failures are not accepted. On the other
hand, the blowing up of service demands is causing
annoying bottlenecks due to non-scalable systems.
Thus, enterprises must spend substantial amounts of
money and efforts in order to improve the availability
and performance of their services. Common solutions
consist on deploying complex and expensive systems
which frequently imply the reengineering of the soft-
ware products that use such systems. However, many
companies can not afford such costs, and other low-
cost solutions are required.

Enterprise applications implemented in Java, and
also most of J2EE services, need to interact with a
JDBC driver in order to access their data, commonly
stored in a relational DBMS. The aim of our Repli-
cated JDBC (RIDBC, hereafter) driver is to provide
transparent support for database replication, without

*This work has been partially supported by the EU grant
IST-1999-20997 and the Spanish grant TIC2003-09420-
C02-01.

needing any modification in the underlying database
schema, nor in the applications that have to access
these replicated data. In order to achieve this, a sec-
ond JDBC driver is needed, placed on top of the native
one. This second driver intercepts all the operations
requested by the user applications and, when needed,
broadcasts them to the rest of replicas using total or-
der (i.e., with a uniform atomic broadcast protocol
(HT93)). This will ensure that all database replicas
process all update operations in the same order, guar-
anteeing database consistency.

Although there are other kinds of database replica-
tion protocols with better performance features and
that require less replica interaction (WSP100), the
RJDBC solution offers other interesting features that
are appealing for small and medium enterprises. First,
it does not require any schema modification; usually,
other database replication protocols require that some
metadata are added to the database being managed,
for instance, data item versions, or owner replica
numbers (JAJT02; RMAT02). Such metadata pre-
vent replication transparency, since they force that all
applications access the database using the replication
support. Accesses made by-passing it, may get unde-
sirable results. In RIDBC this problem is not present.

The second feature is that the needed replication sup-
port can be easily and unexpensively implemented us-
ing a broadcast toolkit, and it does not need many re-
sources. So, RIDBC can be deployed in computers
with less memory and less powerful processors than
most other database replication protocols.

The rest of the paper is structured as follows. Sec-
tion 2 describes the structure of RIDBC. Section 3 ex-
poses some results of the developed prototype, com-
paring it with other systems. Related work is de-
scribed in section 4. Finally, section 5 concludes this

paper.

2 ARCHITECTURE OF RJDBC

A database replicated by means of the RIDBC mid-
dleware is composed by multiple replicas accessible
via JDBC. In each node where a client application ex-
ists, there will be a RIDBC driver on top of RIDBC
core and the usual JDBC driver. As stated previously,
this RJIDBC core uses a uniform atomic broadcast
protocol in order to intercommunicate the replicas.

Basically, each node pursues two main targets:

1. To spread all significant operations performed on
each node among all the nodes of the system, in the
same order. The operations are codified, packed in
some ready-to-transmit way and finally applied on
actual database objects.

2. To ensure database consistency among all the repli-
cas. Notice that all the operations arrive to each
node through an atomic broadcast protocol, so that
the same operation delivery order is guaranteed in
all nodes.

APPLICATION | APPLICATION | APPLICATION

(JDBC)

OPERATIONS FORWARDING ENGINE

DISPATCHING
SERVICE

RECEPTION
OPERATIONS EXECUTION ENGINE SERVICE

(JDBC)

| DBMS |

SNOILVOINNWWOO

Figure 1: RIDBC global architecture.

So, in order to reach these goals, each RIDBC node
can be roughly split up into two main components,
connected by means of a third one, the communica-
tions subsystem (figure 1):

1. The operations forwarding engine has the job of
broadcasting all the operations performed over the
local node among all the nodes of the RIDBC en-
vironment, including itself. It provides a JDBC in-
terface to the application layer and we refer to it as
RIDBC driver.

2. The operations execution engine feeds on the oper-

ations delivered by the communications subsystem.
It sequentially applies all received operations to the
underlying DBMS.

3. The communications subsystem consists of two

different elements, the dispatching service, which
broadcasts all the operations provided by the for-
warding engine, and the reception service, which
admits the broadcast operations and delivers them
to the operations execution engine.

The latter two components constitute the RIDBC
core.

Going into further details, the applications interact
with the RIDBC node through standard JDBC invo-
cations, using our RJIDBC driver. Such driver com-
plies with the JDBC specification and provides all
the objects required for database accessing. These
objects wrap JDBC invocations and forward them to
the RIDBC core. These objects are named wrappers.
They stand for proxies of the actual JDBC database
objects. Thus, all database operations requested by
the client applications are immediately packed and
forwarded by the wrappers to the RIDBC core. This
communication takes place using Java RMI.

When the RIDBC core is notified about a new op-
eration, it promptly sends it towards all the system
nodes, including itself, using a uniform atomic broad-
cast (this implies total order). Not all operations are
required to be broadcast but only those affecting the
database management system state. For instance, if
the underlying database uses multi-version concur-
rency control, read-only accesses may not be trans-
mitted.

When a RIDBC node receives a new operation
from the communications protocol, it is enqueued for
subsequent processing. Each RIDBC node contains
an Operations Execution Thread (OET), in charge
of executing sequentially all enqueued operations.
This feature, plus the total order delivery, ensure the
database inter-replica consistency.

On the other hand, the OET does not apply oper-
ations over the database directly either. Instead, it
executes them over exact copies of the final JDBC
database objects, called adapters. These elements
allow fine grained control of operation execution re-
sults. They maintain a reference to the actual JDBC
database objects and execute the requested operations
on them, collecting the results and communicating
them to the OET.

In essence, each node consists of five components
arranged as figure 2 states. These components are:
the wrappers layer, the manager, the communications
layer, the operations execution thread and the adapters
layer.

APPLICATION

(JDBC)

| WRAPPERS |

MANAGER
JGROUPS

"OINNWNOD

OPERATIONS EXECUTION THREAD

ADAPTERS

C JDBC)

DRIVER

| DBMS |

Figure 2: RIDBC architecture.

o The wrappers layer provides access to the un-
derlying database management system, hiding the
RIDBC replication engine. Thus, applications ac-
cess to regular JDBC objects, but these objects do
not operate directly on the database. Instead, they
act as proxies of the actual JDBC objects, placed
on the adapters layer.

e The manager is the core of the RIDBC middle-

ware. When the wrappers layer forwards an opera-
tion, the manager determines if it must be broad-
cast or not. To this end, the manager contains
a forwards table. For instance, in multi-version
based DBMSs (PostgreSQL is a sample), read-only
queries may not lead to any transaction lock, and
they are not forwarded.
If the forwards table states that the operation must
be broadcast, it is transferred to the communica-
tions layer. But if the operation does not need to
be broadcast, it is immediately applied on the local
database.

e The communications layer is the component that
implements the atomic broadcast services needed
in RIDBC. Currently, this component has been
implemented using an open-source toolkit called
JGroups (Jav04), although other similar toolkits
could be easily integrated in our system.

o The operations execution thread serves sequen-
tially all the operations received via atomic broad-
cast, once they have been delivered by the commu-

nications layer. Note that these operations are not
applied directly to the underlying database, but to
the RIDBC adpters layer.

Concurrent transactions may get locked if they try
to access the same data items in conflicting modes
(write-write, for instance). Since only one opera-
tions execution thread exists in RIDBC, a lock of
this kind could imply a system deadlock. To pre-
vent this, a timeout-based mechanism exists that,
once a given time has ellapsed, starts a new thread
that will serve the remaining enqueued operations.

e The adapters layer is the lowest layer of RIDBC
and directly uses the services provided by the “na-
tive” JDBC driver.

Whilst the wrappers provide an image of the JDBC
object to the application, the adapters represent the
JDBC object to the RIDBC replication engine.

3 RESULTS

One of the advantages of RIDBC when it is com-
pared to other database replication mechanisms is its
simplicity, both in its design and in its resource use.
So, in our tests, we have used a COPLA (JAJ102;
IMDBO03) prototype, a replication engine that uses
constant interaction, instead of the linear interaction
approach used in RIDBC, but COPLA requires that
some metadata are written in the replicated database.
So, we have tested there the differences between a
full-featured replication engine and RIDBC. Addi-
tionally, another system used in the tests is a non-
replicated database, accessed directly using JDBC.

Tests results are shown in figure 3. The first sub-
figure shows the productivity rate of each system,
measured in transactions per second. The best re-
sults correspond to directly accessing the DBMS via
JDBC, executing up to four times more transactions
than the RIDBC system. The overload of RIDBC is
evident, although not excessive, since two communi-
cations layers (RMI and JavaGroups) are being used.
However, RIDBC throughput is substantially higher
than COPLA, standing for an alternative in clustered
systems.

The second subfigure shows the abort rate of each
system. As it can be found the RIDBC engine beats
COPLA, providing a much lower abort rate. As ex-
pected, RIDBC and JDBC throw similar abort rates,
since in both systems operations should be executing
in a similar order.

In conclusion, RIDBC provides higher perfor-
mance than more complex systems in not very big
controlled environments, with negligible deployment
effort. It also supplies similar abort rate than access-
ing the database directly, via JDBC, obviously with
lower performance.

TDBC ——
200 |

COPLA lazy -
COPLA eager

150 -

100 -

Transactions per second

o
e

50 55 60 65 70 75 80 85 90
Conflict probability (%)

(a) Transactions per second results

50 F ‘ ‘ ‘ ‘ IbBC —— |1
COPLA lazy -
COPLA eager
40 |
53 30 L
2
g
£ 207
10 N
0 ‘ P ‘ ‘ ‘ ‘
10 15 20 25 30 35 40 45 50

Conflict probability (%)

(b) Abort rate results

Figure 3: Systems performace results

4 RELATED WORK

Much work about database replication is based
on the use of efficient atomic broadcast primitives
(GHOS96; PGS98; PJKA00). However, most of
this work uses a constant interaction approach, only
needing update propagation at the transaction com-
mit phase. This is a very good approach to enhance
the replication protocol performance, but usually it
also implies a more ellaborated protocol which may
require more resources. RIDBC uses linear interac-
tion to propagate the updates, but it does not require
any metadata information on disk, nor in memory, in
order to decide about transaction completion. Thus,
RJIDBC may be an adequate solution when the avail-
able memory and processor are limited.

S CONCLUSIONS

RIDBC claims to be a simple solution for enter-
prises which require database replication capabilities
but do not want to invest much money and time in de-
ploying complex, full-featured systems. On the con-
trary, RIDBC is extremely easy to install and setup,
and fits comfortably into the Java database accessing
architecture.

RIDBC provides an extensible lightweight plat-
form, with tolerable performance results in clustered
environments. Besides, depending on the underlying
database management system, RJDBC fine-tunning
could improve such results, resolving every instant if
an operation must be spread over all the nodes or not.

The current RIDBC prototype does not integrate
fault tolerance, but only replication capabilities.
However, it contains all required services for easy in-
tegration with a recovery protocol. In fact, an alpha
version of it is currently being developed.

REFERENCES

J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dan-
gers of replication and a solution. In Proc. of the 1996
ACM SIGMOD International Conference on Manage-
ment of Data, pages 173182, Canada, 1996.

V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and
related problems, chapter 5, pages 97-145. Addison
Wesley, 2nd edition, 1993.

L. Irtn, F. Mufioz, H. Decker, and J. M. Bernabéu. Copla:
A platform for eager and lazy replication in networked
databases. In 5th Int. Conf. Enterprise Information
Systems (ICEIS’03), volume 1, pages 273-278, April
2003.

J.Esparza Peidro, A.Calero, J.Bataller, FMuiioz, H.Decker,
and J.Bernabéu. Copla - a middleware for distributed
databases. In 3rd Asian Workshop on Programming
Languages and Systems, pages 102-113, 2002.

JavaGroups. JGroups web site. Accessible in URL:
http:/fwww.javagroups.com, 2004.

F. Pedone, R. Guerraoui, and A. Schiper. Exploiting atomic
broadcast in replicated databases. In Proc. of Eu-
roPar’98, 1998.

M. Patino, R. Jiménez, B. Kemme, and G. Alonso. Scalable
replication in database clusters. In Proc. of 14th IEEE
DISC, pages 315-329, 2000.

L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and
P. Vicente. The GlobData fault-tolerant replicated dis-
tributed object database. In Proc. of the First Eurasian
Conference on Advances in Information and Commu-
nication Technology, Teheran, Iran, October 2002.

M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and
G. Alonso. Database replication techniques: A three
parameter classification. In Proc. of the 19th IEEE
SRDS, pages 206-217, October 2000.

