

IT
I-

IT
E-

05
/1

1

Dealing with Writeset
Conflicts in Database

Replication Middlewares

Technical Report ITI-ITE-05/11

J. E . A r m e n d á r i z , F . D . M u ñ o z , M . I . R u i z ,
J. R . G o n z á l e z d e M e n d í v i l , L . I r ú n

enrique.armendariz@unavarra.es, f muny o z@it i.es, miruif ue@it i.es,
mendivil @unavarra.es, l irun@it i.es J.

 E
. A

rm
en

dá
ri

z,
 F

.D
. M

uñ
oz

, M
. I

. R
ui

z,
 J

.R
. G

on
zá

le
z

de
 M

en
dí

vi
l,

L.
 I

rú
n:

 D
ea

lin
g

w
ith

 w
ri

te
se

t c
on

fli
ct

s
in

 d
at

ab
as

e
re

pl
ic

at
io

n
m

id
dl

ew
ar

es

Dealing with Writeset Conflicts in Database Replication
Middlewares

�

Technical Report ITI-ITE-05/11

J. E. Armendáriz
�
, F. D. Muñoz

�
, M. I. Ruiz

�
, J. R. González de Mendı́vil

�
, L. Irún

�
� ���

Depto. de Matemática e Informática
� ���

Instituto Tecnológico de Informática
Univ. Pública de Navarra Univ. Politécnica de Valencia

Campus de Arrosadı́a Camino de Vera, s/n
31006 Pamplona, SPAIN 46022 Valencia, SPAIN
Phone: +34 948 168 056 Phone: +34 963 877 069

Fax: +34 948 169 521 Fax: +34 963 877 239
email: � enrique.armendariz,mendivil � @unavarra.es email: 	 fmunyoz,miruifue, lirun
 @iti.es

Abstract

Many database replication protocols have to deal with finding out whether the writesets of
some concurrent transactions have a non-empty intersection, blocking or aborting part of these
conflicting transactions in that case. To this end, a possible solution consists in checking these
writesets programmatically and this requires some time and computing power. This situation is
even worse if the replication support is being provided by a middleware, since there is no help
from the DBMS in that layer. This paper analyzes the effect of using the concurrency-control
support of the local DBMS for detecting conflicts between local transactions and writesets being
applied for remote transactions. This allows some simplifications and performance enhancements
in several database replication protocols.

1 Introduction

Many database replication protocols are using the constant interaction approach [20] for update prop-
agation among replicas; i.e., they only propagate their updates using a constant number of multicasts
to the rest of replicas (usually a single multicast at the end of the transaction being executed). In these
protocols the transaction is executed following a scheme similar to the passive replication model; i.e.,
one of the replicas directly receives the transaction sentences, and once the commit procedure be-
gins or terminates (depending on the protocol class [8], either eager or lazy, respectively), this master
replica gets the transaction writeset and multicasts it to the rest of replicas. Once this writeset is re-
ceived in those cohort replicas, it has to be applied. There are different techniques for applying the
updates included in this writeset, depending on the writeset contents [12]: either SQL sentences or
some kind of specially tailored data structure, such as the usual contents of a writeahead log.

When such writeset contents are being applied in the local database replica, some concurrency
control issues have to be considered; i.e., these updates may collide with some previous accesses

�
This work has been partially supported by the Spanish grant TIC2003-09420-C02.

1

made by other local concurrent transactions, and in some cases this will imply that these local trans-
actions must be aborted or that the writesets may remain blocked until those local transactions have
been completed. This is easily achieved if the database replication support has been provided with
some extensions to the DBMS core, since the appropriate locks can be trivially requested before the
writeset is applied. On the other hand, these checks may be difficult or, at least, costly, if the database
replication support is being provided by a middleware.

This paper describes a simple technique for managing concurrency control at the middleware layer
with a minimal help from the underlying DBMS. This permits an easy detection of writeset conflicts
in the middleware and makes some optimizations possible when we are programming database repli-
cation protocols at that layer. To this end, our technique allows the immediate abortion of one of the
conflicting transactions, without needing that such transaction requests its termination. As a result, in
many replication protocols this will improve their performance, since transactions are aborted sooner
and the system becomes ready for processing other active transactions. The performance results in
some tests presented in the following sections corroborate these improvements.

Our solution needs to scan some of the system catalog tables in the underlying DBMS, so it is only
convenient for DBMSs based on multi-versioned concurrency control (or MVCC, for short). However,
this kind of concurrency control is being used in many DBMSs, and one of them (PostgreSQL) has
been chosen in our architecture to implement this support.

The rest of this paper is structured as follows. Section 2 describes a scheme for detecting con-
flicts among writeset applications and local transactions with the help of the DBMS. Later, section
3 describes one protocol [14] and some variations that are used as an example to test the benefits of
this conflict detection scheme. Section 4 provides some initial performance results that compare the
approaches discussed in the previous section. Finally, sections 5 and 6 present some related work and
the conclusions of this paper.

2 A Scheme for Conflict Detection

The support that is described in this section is part of our MADIS architecture [10, 11], and has been
included in its bottom layer. Its aim is to detect conflicts between pairs of transactions being managed
by our middleware, and it partially depends on some characteristics of the PostgreSQL DBMS that
is being used in MADIS. Concretely, it needs that the underlying DBMS uses a MVCC mechanism,
since it has to read the contents of one of the system catalog tables, and this may need read locks in
non-MVCC DBMSs that will block other concurrent transactions each time such tables are modified
by the latter. However the overall mechanisms are easily portable to other MVCC database systems.

MADIS has been implemented in Java and provides a JDBC interface to applications. Its current
communication support is being provided by the Spread group communication system [1, 6]. Since
this paper is only interested in how MADIS provides support for conflict detection among concur-
rent transactions, no additional details about the system model are needed. Moreover, the protocols
described in the next section are not complete, since nothing has been said about their recovery proce-
dures. Again, these procedures are important for ensuring that the replicated databases implemented
using this middleware are actually highly available, but they are not needed for discussing the conflict
detection mechanisms.

Besides this, MADIS has been designed for providing support for fully replicated databases; i.e.,
we have a replica of the database in each machine where MADIS runs and each node has a complete
replica of such a database. The replication protocols described in this paper follow this kind of repli-
cation. Additionally, all of them can be classified as eager, with constant interaction and non-voting

2

termination, according to [20].
Coming back to the scheme for conflict detection, it is basically composed by these two elements:

� A function named getBlocked() put into the database schema, that looks for blocked transac-
tions in the pg locks view placed in the PostgreSQL system catalog. It returns a set of pairs
composed by the identifier of a blocked transaction and the identifier of the transaction that has
caused such a block. If there is no conflict between any pair of transactions when this function
is called, it returns an empty result set.

� An execution thread per database that periodically (its period is configurable, and is commonly
set to values between 500 and 1000 ms) uses the function described above. Take into account
that in multi-versioned DBMSes the read-only operations cannot be blocked. This thread runs
at the middleware layer.

Once this thread has received a non-empty result set it may request the abortion of one of
the transactions being involved in that conflict. For this purpose, each transaction may have a
priority level assigned to it. By default, this thread takes no action if both transactions have the
same priority level, but it aborts the lowest priority transaction otherwise.

This mechanism can be combined with a transaction priority scheme in the replication protocol.
The O2PL [4] BULLY variation described in [2] uses this priority scheme as follows. Two priority
classes are defined, with values 0 and 1. Class 0 is assigned to local transactions that have not started
their commit phase. Class 1 is for local transactions that have started their commit phase and for
those transactions associated to delivered write sets that have to be locally applied. Once a conflict is
detected, if the transactions have different priorities, then that with the lowest priority will be aborted.
Otherwise, i.e., when both transactions have the same priority, a second priority function is applied
for transactions at level 1, avoiding thus deadlocks, but nothing is done with transactions belonging to
level 0. Similar approaches may be followed in other replication protocols that belong to the update
everywhere with constant interaction class [20], as we will describe in the next section.

Finally, it is worth noting that this scheme is only valid for active transactions; i.e., for transactions
that are running when such a conflict detection is being made. This may be an advantage when the
conflict arises between a local transaction that has not arrived yet to its commit request, and a writeset
that belongs to a remote transaction that has to be committed. In these cases, the regular solution
to this conflict requires the abortion of the local transaction and this may be easily completed in our
scheme. On the other hand, other protocols may require to check for conflicts between different
remotely received writesets that belong to transactions executed in different nodes. In that case, our
scheme is not valid until those writesets are applied to the local database replica, and the conflict
may only happen if both writesets have been concurrently put into the database replica, but several
protocols are not using this second way of handling remote writesets. Moreover, the first situation
described in this paragraph may occur in all replication protocols, and as a result our technique may
be appropriate for many of them.

3 A Case of Study: The SI-Rep Protocol

We have selected the SI-Rep protocol described in [14] as a case of study for our conflict detection
mechanism. There are several reasons that justify this selection: (i) It is a good protocol for guar-
anteeing the snapshot isolation level [3] (at least, its 1CSI variation as described in [14]), as it has
been proven in its performance measurements. (ii) Its description includes a lot of implementation

3

optimizations that improve its overall performance. So, we may be able to test our conflict detection
technique on the optimized version of this protocol, comparing it to the same implementation using
another detection approach, and with the non-optimized version with our detection approach.

According to [3], the snapshot isolation level needs two timestamps to be assigned to any transac-
tion. The first one is its start timestamp, that must be set when the transaction starts its first database
access. The second one is its commit timestamp, that has to be assigned when such a transaction
successfully commits. Both timestamps are usually logical timestamps implemented as counters. In
order to commit a transaction
�� , a single rule has to be respected in a centralized implementation
of this isolation level: No other transaction
�� with a commit timestamp in
�� ’s interval [start(
��),
commit(
��)] wrote data that
�� also wrote. We need this correctness rule for understanding the SI-
Rep protocol that we describe on the sequel, and to justify that our blocking detection technique does
not violate the correctness criteria of the original protocol.

This protocol uses an atomic multicast [9], i.e., a reliable multicast with total order delivery, and
thus it ensures that the writesets being multicast by each replica at commit time are delivered in all
replicas in the same order. It uses two data structures for dealing with writesets: ws list, which stores
all the writesets known (i.e., delivered) until now, and tocommit queue, which holds those writesets
already delivered but not yet applied in the local database replica. Moreover, for each transaction,
the attributes cert and tid hold something similar to the transaction start and commit timestamps,
respectively.

The steps that define this protocol are the following (further details can be found in [14]):

I. When an operation for transaction T � arrives, if it is the first one, it is blocked until no hole
appears in the local tocommit queue. On the other hand, if it is a commit request, the writeset
for that transaction is retrieved (if it is empty, the transaction can be committed immediately
and no other checking is needed), and checked for conflicts with all the current contents of
tocommit queue. If some conflicting writeset is present, T � is aborted, otherwise its cert attribute
is assigned to the current value of the counter of globally validated transactions and its writeset
is multicast to all replicas.

NOTE: There are two optimizations in this first step. The first one is related to the presence
of holes in tocommit queue, that will be caused because writesets may be concurrently
applied to the underlying database as soon as they are delivered and globally checked. If
one of the writesets is successfully applied before all its predecessors in that queue, a hole
is generated, and this prevents local transactions from being started, since they may read
an invalid snapshot. The second optimization is related to the scanning of tocommit queue
before multicasting the transaction writeset. Thus, the protocol may find out as soon as
possible if conflicts arose between this transaction and those that are trying to commit
now. Take into account that the writesets of this queue have been delivered before T � ’s
writeset is multicast, so they will have a commit timestamp in the [start(
 �), commit(
 �)]
interval and will lead to the abortion of T � .

II. When T � writeset is delivered in total order, its writeset contents are checked with those of all
transactions in ws list and T � will be rejected (i.e., aborted in its local node, and discarded in all
others) if exists some transaction T � whose tid is greater than T � .cert, and their writesets have
a non-empty intersection. Otherwise, if this checking has been successfully passed, the counter
of globally validated transactions is increased and the tid attribute of this transaction receives its
value. Additionally, T � ’s writeset is appended to the current contents of both tocommit queue
and ws list.

4

III. Finally, when no conflicting transaction precedes T � in tocommit queue and it is local or no
local transaction is trying to start or no new holes will appear, then T � is locally applied and
committed in the underlying database replica and it is removed from tocommit queue.

As it can be seen in the previous description, there are different conflict detection checkings in this
protocol. The first one is needed in step I for validating locally the transaction before its writeset is
multicast. Basically, it is checking whether the correctness rule described at the start of this section is
satisfied. However, there may be other concurrent transactions whose writeset is delivered before that
of the analyzed transaction and that may also lead to its abortion. Those transactions are checked in
the global validation action performed in step II. Finally, the writeset application procedure described
in step III also needs to check conflicts among writesets for deciding when each writeset may be
securely applied. This last checking is only needed for allowing the concurrent execution of non-
conflicting writesets; i.e., for optimizing the protocol performance. Additionally, those checks made
in step I are also optional, since the checking being made in step II is a superset of them, but they
have been implemented in that paper since they are able to reduce the amount of needed multicasts,
aborting earlier some transactions that otherwise would have been aborted in step II.

Finally, the underlying database system is also able to check for conflicts, aborting some trans-
actions if their access patterns violate the rules of the snapshot isolation level provided that it is
supported by that DBMS. To this end, we have chosen the PostgreSQL DBMS that provides the se-
rializable ANSI SQL isolation level using a multi-versioned concurrency control mechanism that is
actually only able to ensure the snapshot isolation level if we follow the stricter serializable definition
proposed in [3].

Additionally, the checks natively made by the underlying DBMS may detect also deadlocks and
incorrect sequences of updates that might lead to the abortion of a remote transaction, instead of a
local one (that would have been finally aborted by the protocol). So, the remote writeset application
has to be retried if the underlying DBMS aborts it.

Our conflict detecting approach will be able to abort local conflicting transactions before they are
checked in step I; i.e., before a transaction requests its commit. For this purpose, the protocol will
assign the highest priority to the application of a writeset, and if such an application collides with
a local transaction that has not arrived to its commit request, that local transaction will be aborted.
This satisfies the correctness rule described above, since the writeset is associated to a transaction that
has successfully passed its global validation phase and that already has a commit timestamp that is
trivially included into the [start, commit] interval of the local transaction, since the latter has not yet
requested its commit.

We take this SI-Rep protocol as a base to develop its following three implementations:

� SIR (SI-Rep): In this case, our SI-Rep implementation follows all the steps of the protocol
described in [14], scanning the writesets for deciding if they have a non-empty intersection.
However, as we will see in the following section, we have chosen in our tests a set of transactions
that define a contiguous interval of values in the primary key of the tables being accessed. As a
result, it will be quite easy to find out if two writesets collide, given their size and the primary
key value of the first accessed row.

� SIR-BD (SI-Rep with Blocking Detection): In this second alternative, we use the previous im-
plementation as a base, and we add our blocking detection mechanism to improve its behavior.
None of the checks done in the previous case has been removed in this second implementation.
This ensures the correctness of this alternative, since our blocking detection mechanism will

5

only abort a transaction when all these conditions are satisfied (in all other cases, no special
action is taken):

– The transaction to be aborted is local.

– It has not arrived to request locally its commit; i.e., its writeset has not been multicast to
the rest of replicas.

– The transaction that causes its abortion has been generated for applying a remote writeset.

As we have seen above, this approach satisfies the correctness criteria of the snapshot isolation
level.

Initialization:
1. lastvalidated tid := 0
2. lastcommitted tid := 0
3. ws list := �
4. tocommit queue k := �

I. Upon operation request for T � from local client
1. If select, update, insert, delete
a. if first operation of T �

- T � .cert := lastcommitted tid
b. execute operation at R � and return to client

2. else (commit)
a. T � .WS := getwriteset(T � �) from local R �
b. if T � .WS = � , then commit and return
c. multicast T � using total order

II. Upon receiving T � in total order
1. obtain wsmutex
2. if � T��� ws list : T � .cert � T� .tid �

T � .WS T� .WS !" �
- release wsmutex
- if T � � is local then abort T � � at R � else discard

3. else
- T � .tid := ++lastvalidated tid
- append T � to ws list and tocommit queue k
- release wsmutex

III. T � := head(tocommit queue k)
1. if T � is remote at R �
a. begin T � � at R �
b. apply T � .WS to R �
c. # T� : T� is local in R ��� T� .WS T � .WS !" �
� T� has not arrived to step II
(this is analyzed by our conflict detector,
concurrently with the previous step III.1.b)
- abort T�

2. commit T � � at R �
3. ++lastcommitted tid
4. remove T � from tocommit queue k

Figure 1: SIR-SBD Algorithm

$ SIR-SBD (SI-Rep, Simplified and with Blocking Detection): This last implementation uses a
simplified version of the SI-Rep protocol, where all writeset checks being made at steps I and
III have been removed. Figure 1 shows its actual algorithm. In this variant we have eliminated

6

the possibility of applying non-conflicting writesets concurrently. Our aim is only to prove that
combining the mandatory writeset check of step II and our blocking detection mechanism we
may get acceptable results. Of course, adding the possibility of concurrent execution among
non-conflicting writesets provides better performance results in heavily loaded systems.

These protocols have been implemented in the current version of our middleware. Unfortunately,
this version is still a prototype and provides bad performance for writeset collection. So, the perfor-
mance results discussed in the next section are penalized due to this fact.

4 Performance Results

We describe two different classes of tests in the following subsections. In the first one, we analyze
different scenarios and test in them all the protocols described in the previous section. In the second
subsection we analyze the effects of the conflict detection timeout interval on the performance results,
and we see that in the regular range no significant variations arise.

4.1 Protocol Comparison

The protocols described above have been used in some performance tests that have been carried out
in our middleware. To this end, a database with only one table has been used. This table has 10000
items with two fields each one. One of these fields is the primary key of this relation and the table
has been initialized using the first 10000 natural numbers into such primary key. This simple database
schema allows a fast detection of conflicts with row granularity at the middleware layer. A schema
with many tables is more realistic, but using it the amount of tests to be done in the middleware grows
a lot, and we might obtain better results with our blocking detection mechanism, since its load mainly
depends on the work being done at the core of the DBMS for dealing with access conflicts, and the
DBMS provides better performance than any solution implemented in the middleware.

These performance tests have used only two replicas of the database previously described. In
each replica, 10 concurrent connections have been used, and each connection is used for executing
10 sequential transactions. Each transaction is composed by a number of update SQL sentences that
explicitly specify the row to be updated with a where clause. Moreover, we have tried to generate
some abortion rates and transaction lengths varying the number of updates used in each transaction
and a delay between these updates. For this purpose, the abortion rates have been configured to these
four values: 5%, 10%, 25%, and 50%, using transactions with 20, 40, 100 and 200 updated rows,
respectively. The delays between consecutive updates have been configured to the following values:
0, 25, 50, 100, 200, 400, 600, and 1000 ms; giving as a result transaction lengths that range from 0 to
20 seconds (5% abortion rate), from 0 to 40 seconds (10% abortion rate), from 0 to 100 seconds (25%
abortion rate), or from 0 to 200 seconds (50% abortion rate).

Figures 2 to 5 show the mean values for the transaction lengths for the four different abortion rates
previously discussed. In all figures, all protocols are plotted using two different curves: one for their
committed transactions and another for their aborted ones. On the sequel, we will discuss separately
the curves for committed and aborted transactions.

4.1.1 Aborted Transactions

There are no significant differences in the four different tested abortion rates among the protocols’
behavior. In all cases, both SIR-BD and SIR-SBD are able to abort sooner those transactions that

7

0

5

10

15

20

0 5 10 15 20

Ti
m

e
(s

ec
)

Minimal trans. length (sec)

SIR (committed)
SIR-BD (committed)

SIR-SBD (committed)
SIR (aborted)

SIR-BD (aborted)
SIR-SBD (aborted)

Figure 2: Performance results for a 5% abortion rate.

finally would have been aborted anyway, when they are compared with the original SIR. The SIR-BD
implementation shows its best results with long transactions, where its average completion time is
between 80% and 85% of the original SIR, being its gains smaller with shorter completion times.
On the other hand, the SIR-SBD implementation behaves slightly better than SIR-BD with short
transactions and slightly worse with long ones, but being always better than the original SIR. These
differences between SIR-BD and SIR-SBD are higher with low abortion rates (i.e., 5%) but almost
negligible in the rest (i.e., 10%, 25%, and 50%). In the lowest abortion rate, SIR-SBD behaves
“better” than SIR-BD for short transactions due to the fact that finally committed transactions need
longer completion times in the former protocol and this implies that a given transaction collides with
others that would have not started yet if the latter protocol was used. This slightly enlarges the SIR-
SBD’s abortion rate for short transactions. Thus, it is actually 4.5% in SIR-SBD, but 3.6% in SIR
and 3.2% SIR-BD for the non-delayed transaction set that was designed for generating a 5% average
abortion rate. On the other hand, its abortion rate is exactly the same as that of SIR-BD for longer
transactions, being both of them always smaller than SIR’s.

One additional comment is remarkable regarding aborted transactions. The underlying DBMS
has helped also a bit for aborting conflicting transactions. As it can be seen in the figures, once the
inter-update delay is longer than 50ms, the aborted transactions last less than their minimal time in all
protocols (i.e., the curves for aborted transactions are below the diagonal line in all figures). Since the
underlying DBMS uses a MVCC mechanism, transactions only get blocked when they present write-
write conflicts between them. If so arises, once the first blocking transaction commits, its blocked
counterparts are automatically aborted by the DBMS. This has often happened in our tests, due to
the design of the transactions used in them. However, even in these cases, our blocking detection
mechanism is able to abort sooner those transactions that finally would have been aborted by the
DBMS or by the protocol.

8

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40

Ti
m

e
(s

ec
)

Minimal trans. length (sec)

SIR (committed)
SIR-BD (committed)

SIR-SBD (committed)
SIR (aborted)

SIR-BD (aborted)
SIR-SBD (aborted)

Figure 3: Performance results for a 10% abortion rate.

4.1.2 Committed Transactions

Finally, as a result of the improvement in the completion time of aborted transactions, figures 2 to
5 also show that the completion time of committed transactions is similar in the SIR and SIR-BD
protocols when short transactions are considered. In these cases, the SIR-SBD shows a small overhead
when compared with these two protocols, except when the abortion rate is greater than 25%. In this
latter case, shown in Fig. 5, its overhead is almost 25% of the completion time in SIR and SIR-BD for
those transactions with null inter-update delay. Additionally, when transactions have an inter-update
delay greater than 100ms (take into account that transactions are aborted sooner in this case by SIR-
BD and SIR-SBD), both the SIR-BD and SIR-SBD provide a completion time that is 5% shorter (on
average) than the SIR’s one.

The SIR-SBD overhead for short transactions is easily explained by its simplifications that have
removed the concurrent application of writesets in step III. This provided good results for aborted
transactions, since they were aborted even sooner than in the other two protocols; but it had the
important drawback of increasing a bit the abortion rate, and also the increase in the completion time
of committed transactions that we have analyzed here.

All these figures also show that with long transactions, higher abortion rates (i.e., higher conflict
degrees) imply better performance improvements. This implies that with abortion rates smaller than
5% the improvements achieved with this technique will be also less significant.

Anyway, these tests have shown that the optimizations included in the SI-Rep (and implemented
as SIR and SIR-BD) provide good results in our system, similar to those described in its original paper
[14] when it is compared to a non-optimized version (SIR-SBD in our case). On the other hand, it
also shows that our conflict detection mechanism is able to provide good results when transactions are
long, simplifying a bit the efforts needed to implement a replication protocol in a middleware.

As a result, we may say that this conflict detection technique boosts the traditional writeset conflict
management techniques at the middleware layer when they aim to provide a row-level granularity.
However, our technique cannot be used in all database replication protocols, since it is only valid for
replication protocols that only need to check for writeset conflicts. Take into account that there are

9

0

20

40

60

80

100

0 20 40 60 80 100

Ti
m

e
(s

ec
)

Minimal trans. length (sec)

SIR (committed)
SIR-BD (committed)

SIR-SBD (committed)
SIR (aborted)

SIR-BD (aborted)
SIR-SBD (aborted)

Figure 4: Performance results for a 25% abortion rate.

others that might need readsets [17, 15], or that use object versions for conflict checking [15].

4.2 Timeout Intervals

We compared four different timeout values for our blocking detector: 300 ms, 500ms, 700ms and
1000ms. To this end, we chose a configuration with an abortion rate equal to 25% –i.e., with 100
updates per transaction– and 100 ms of delay between consecutive updates. The results of this test are
shown in figure 6, and they are the means of ten different experiments.

These results are quite similar for all timeout values, and only slightly better for the highest one,
which has been used in all the tests discussed in the previous section. With small timeouts, the thread
associated to blocking detection has to be executed more often, and this introduces some overhead that
might only be counterbalanced detecting sooner the conflicts, allowing a faster transaction abortion
that will reduce the system load. This has not happened in this tested configuration. Besides this,
the differences among tested timeouts have been minimal, and it seems appropriate to use in all tests
of the previous section always the same timeout interval. Of course, the optimal timeout value may
depend on the system load being supported, but this test proves that the optimization achievable with
a fine tuning of the timeout interval will be almost insignificant.

5 Related Work

Database replication protocols have been implemented in the core of the DBMS when performance
has been a requirement [12]. In these cases, there are no problems for dealing with writeset conflicts,
since the internal concurrency control mechanisms are able to manage appropriately the requests
being made for applying the incoming writesets. This has been the default behavior in many database
replication protocols [13, 17]. In some of these protocols, depending on the requested isolation level,
readsets must be also transmitted and checked [17].

The non-voting protocol described in [18] is one of the first examples of implementation at the

10

 0

 50

 100

 150

 200

 0 50 100 150 200

Ti
m

e
(s

ec
)

Minimal trans. length (sec)

SIR (committed)
SIR-BD (committed)

SIR-SBD (committed)
SIR (aborted)

SIR-BD (aborted)
SIR-SBD (aborted)

Figure 5: Performance results for a 50% abortion rate.

middleware layer and it has to check for conflicts between pairs of transactions scanning their write-
sets. A mechanism similar to the one described here would have improved its performance as it has
been shown for the SI-Rep one.

Another possible approach for dealing with conflict detection at the middleware layer consists in
using a linear interaction principle as described in [20]. In that case, all replicas receive the same
updating requests in the same order and perform them following the concurrency control of the un-
derlying database; i.e., no special support is needed by the middleware in this case. This technique
has been used in some systems, like C-JDBC [5] and RJDBC [7]. This shares the advantages of our
conflict detection mechanism, since concurrency control has been delegated to the DBMS, but in this
case the linear interaction technique demands the propagation of each update sentence to all replicas,
and this may be costly in terms of communication.

From the point of view of performance, the ideal conflict detection mechanism at the middleware
level has been used in [16], since it may be easily implemented and is checked almost immediately
and seamlessly. Its solution is based on the definition of conflict classes [19] that are application-
dependent. A possible choice is to assign each conflict class to a different database table. If the
user transactions are implemented as stored procedures, the middleware is able to know a priori wich
conflict classes will be used by each transaction. So, conflicts among transactions can be trivially
detected since the replication protocol only needs to check if the conflict classes of the considered
transactions actually intersect; i.e., the writesets need not be analyzed, but only their conflict classes.
Additionaly, the protocols described in [16] may also implement their transactions without using only
stored procedures. So, this solution can be considered optimal, but needs some effort to identify the
conflict classes being used by each transaction. Our solution has worst performance than this one, but
conflicts may be detected with a finer granularity (indeed, row-level granularity, instead of table-level)
and it does not need any assistance for identifying any conflict class, so it is slightly more flexible than
the one described in [16].

11

 12

 14

 16

 18

 20

 22

 300 400 500 600 700 800 900 1000

Tr
an

sa
ct

io
n

co
m

pl
et

io
n

tim
e

(s
ec

)

Blocking detector timeout (ms)

Committed transactions
Aborted transactions

Figure 6: Comparison of blocking detector timeouts.

6 Conclusions

The conflict detection technique described in this paper can be easily implemented in MVCC-based
DBMSs for providing assistance to database replication middlewares. Its main advantages are: (i) the
resulting database replication protocols may delegate the conflict detection to this scheme, allowing
some protocol simplifications, (ii) conflict detection can be associated to transaction abortion, advanc-
ing thus the abortion decisions and reducing in this way the overall transaction completion time (to
this end, the resulting protocols must use a total-order multicast for propagating the writesets), (iii)
conflict detection is actually implemented by the DBMS, so it often has row-level granularity, (iv) its
overall cost is quite low, since it only needs an execution thread that periodically checks one of the
system catalog tables. On the other hand, its main inconvenient is related to concurrency control, too,
since this mechanism can not be used in middlewares that use an underlying lock-based concurrency
control DBMS. In that case, the read accesses to the system catalog table will prevent the progression
of updates requested by other concurrent transactions. Additionally, this detection mechanism only
provides information for write-write conflicts. Other kinds of conflict have to be checked otherwise,
so its natural target is the set of protocols with a snapshot isolation level.

We have tested this mechanism with one of the recent replication protocols that provides this isola-
tion level. The obtained results prove that this approach has better performance than a programmatical
check at the middleware layer, even if this check is accomplished immediately as in the examples pro-
vided here. The results can be easily transferred to many other database replication protocols that also
use the constant interaction approach without propagating readsets, either with voting or non-voting
termination [20].

References

[1] Y. Amir, C. Danilov, and J. R. Stanton. A low latency, loss tolerant architecture and protocol
for wide area group communication. In Proc. of the Intnl. Conf. on Dependable Systems and

12

Networks, pages 327–336, New York, NY, USA, June 2000.

[2] J. E. Armendáriz, J. R. Juárez, I. Unzueta, J. R. Garitagoitia, F. D. Muñoz-Escoı́, and L. Irún-
Briz. Implementing replication protocols in the MADIS architecture. In Proc. of the XIII Jor-
nadas de Concurrencia y Sistemas Distribuidos, Granada, Spain, September 2005.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ANSI
SQL isolation levels. In Proc. of the ACM SIGMOD International Conference on Management
of Data, pages 1–10, San José, CA, USA, May 1995.

[4] M. J. Carey and M. Livny. Conflict detection tradeoffs for replicated data. ACM Trans. Database
Syst., 16(4):703–746, 1991.

[5] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible database clustering middle-
ware. In Proc. of USENIX Annual Technical Conference, FREENIX Track, pages 9–18, 2004.

[6] Center for Networking and Distributed Systems. SPREAD Web Page, 2005. Accessible in URL:
http://www.spread.org/, Johns Hopkins Univ., Baltimore, MD, USA.

[7] J. Esparza-Peidro, F. D. Muñoz-Escoı́, L. Irún-Briz, and J. M. Bernabéu-Aubán. RJDBC: A
simple database replication engine. In Proc. of the Intern. Conf. on Enterprise Inf. Syst., pages
587–590, Porto, Portugal, April 2004.

[8] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution. In Proc.
of the 1996 ACM SIGMOD International Conference on Management of Data, pages 173–182,
Canada, 1996.

[9] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In S. Mullender,
editor, Distributed Systems, chapter 5, pages 97–145. ACM Press, 2nd edition, 1993. ISBN
0-201-62427-3.

[10] Instituto Tecnológico de Informática. MADIS Web Site, 2005. Accessible in URL:
http://www.iti.es/madis/.

[11] L. Irún-Briz, H. Decker, R. de Juan-Marı́n, F. Castro-Company, J. E. Armendáriz, and F. D.
Muñoz-Escoı́. MADIS: a slim middleware for database replication. In Proc. of the 11th
Intnl. Euro-Par Conf., pages 349–359, Monte de Caparica (Lisbon), Portugal, September 2005.
Springer.

[12] B. Kemme. Database Replication for Clusters of Workstations. PhD thesis, Swiss Federal
Institute of Technology, Zürich, Switzerland, August 2000.

[13] B. Kemme and G. Alonso. A new approach to developing and implementing eager database
replication protocols. ACM Transactions on Database Systems, 25(3):333–379, September 2000.

[14] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-Peris. Middleware-based data replica-
tion providing snapshot isolation. In Proc. of ACM SIGMOD Int. Conf. on Management of Data,
Baltimore, Maryland, USA, June 2005.

[15] F.D. Muñoz-Escoı́, L. Irún-Briz, P. Galdámez, J.M. Bernabéu-Aubán, J. Bataller, and M.C.
Bañuls. GlobData: Consistency protocols for replicated databases. In Proc. of the IEEE-
YUFORIC’2001, pages 97–104, Valencia, Spain, November 2001.

13

[16] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Consistent database replica-
tion at the middleware level. ACM Trans. on Comp. Sys., 2005. In press.

[17] F. Pedone. The Database State Machine and Group Communication Issues. PhD thesis, École
Polytechnique Fédérale de Lausanne, Switzerland, 1999.

[18] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente. Strong replication in the
GlobData middleware. In Proc. of Workshop on Dependable Middleware-Based Systems (in
DSN 2002), pages G96–G104, Washington D.C., USA, 2002.

[19] D. Skeen and D. D. Wright. Increasing the availability in partitioned database systems. In Proc.
of Conf. on Principles of Database Systems, pages 290–299, 1984.

[20] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and G. Alonso. Database replication tech-
niques: A three parameter classification. In Proc. of the 19th IEEE Symposium on Reliable
Distributed Systems (SRDS’00), pages 206–217, October 2000.

14

