A Recovery Protocol for Middleware Replicated Databases Rividing GSI*

J.E. Armendariz, F.D. Mufioz-Escoi J.R. Juarez, J.RleéGViendivil B.Kemme
Instituto Tecnologico de Informatica Universidad Rbaalde Navarra McGill University
Valencia, Spain Pamplona, Spain Montreal, Canada

{armendariz, fmunyoz@iti.upv.es {jr.juarez, mendivij@unavarra.es kemme@cs.mcgill.ca

Abstract many properties as those in (centralized) snapshot iealati
continue to hold. In other words, transactions will see a
Middleware database replication is a way to increase consistent snapshot and they will not become blocked, but
availability and afford site failures for dynamic content at the price of increasing the abortion rate as updates may
websites. There are several replication protocols that en- collide with other more “recent” transactions. This is not a
sure data consistency for these systems. The most ateractivmajor drawback since ilmPC-Wmost of the operations are
ones are those providing Generalized Snapshot Isolationread-only (at most 50% in th@rdering mixwith a negligi-
(GS)), as read operations never block. These replication ble conflict rate) [21]. This is of high importance from the
protocols are based on the certification process, however,point of view of replica failure and its recovery (or even for
up to our knowledge, they do not cope with the recovery of joining new replicas).
a replica. In this paper we propose a recovery protocol that The main concern of recovery techniques is to penal-
ensuresGS| (we provide an outline of its correctness) that ize as little as possible on-going transactions (i.e. atgrt
does not interfere with user transactions and permits the ex transactions during the recovery process) and transggrrin
ecution of transactions in the recovering node, even thoughthe data in a manner that the new joining replica may be-
the recovery process has not finished. come available as soon as possible (i.e. issuing new incom-
ing user transactions on it too). This last point is whes
comes in handy when dealing with the recovery process.
1. Introduction The rejoining replica will have a (probably older) consis-
tent snapshot and may accept user transactions as soon as
, i) the replica is available.

. Web servers _usuaIIy pro_wde dynamic content that_|s per- Replication protocols developed for tl@sI consistency
s_lstently stored in E)B.MS'. Itis We”"“?o‘”” that the re_zpl_|ca- level [2, 8, 9, 16, 18, 23], to the best of our knowledge, lack
t'(.)n of the database in dlﬁgreqt_repl|cas ggographmaﬁyd of recovery solutions in case of a rejoining node. Some
tributed improves data availability and scaling perforcean hints are outlined in [9] but there is not a formal presenta-
On the other hand, data consistency is sacrificed. Due to %%on of the solution. In this paper we take the recovery ideas
this, several de_lta_ consistency criteria have _been intiedtuc from [9] and the recovery protocol presented in [14] both
One-Copy SerializabldCS [5], and Generalized Snapshot taking advantage of the facilities provided by a Group Com-
Isolation GSI) [9], among others [17, 16, 20lCSpresents munication System@cCs) [6], mainly strong virtual syn-

rl:hrony [10]). Most of these replication protocols already
roposed are to be used in middleware architectures, guar-
anteeing their portability among sevefaBMSs and also
S standard interfaces for user applications (8@BC). In [14]
%Srecovery protocol for aCSreplication protocol [19] is
introduced. This replication protocol presents the incon-
enience that the application programmer is forced to pre-
eclare the structure of each transaction or to send transac
(Lions as full blocks [19]. This will not be the case for our
olution, we only take the approach they follow in the re-
“This work has been supported by the Spanish Government ueder ~ COVery data transfer: how it is started, how it goes and how
search granT IN2006-14738-C02 it finishes. In this paper, we presentairecovery protocol

such as read operations may become blocked, which ar
most of the operations for web commerce applications such
as TPC-W standard states [21]. As a consequence of this
and because most of commercial and open-source databas
provide Snapshot Isolatios() [4], the GSI correctness cri-
terion is used.

GSI states that a transaction does not necessarily nee%
to observe the “latest” snapshot, as opposit8itm a cen-
tralized environment. It can observe an older snapshot, an

that works with any of th&Sireplication protocols already | User Application

proposed [2, 9, 16, 18]. Thus, we may obtain that ongoing o]|
transactions on previously alive replicas do not need to be Replication || "5l " ‘
H H Middleware Replication & Recovery
aborted, they can continue working as normal and the trans- rotoco ‘
action load can be balanced to the new replica as soon the i

Conflict Detection
&

GCSstates it is reachable from the communications point

of view. Furthermore, for the rejoining node the recovery

data transfer is nothing more than a “delayed” propagation

of writesets. Mot
The rest of this paper is organized as follows. Section 2 System

is devoted to explain the main characteristics of replarati

protocols providingGsl that could use our recovery pro- Figure 1. An example of a replica inside a

posal. Section 3 introduces the middleware architecture database middleware architecture

used in this work. The recovery protocol is described, along

an outline of its correctness, in Section 4. Some optimiza-

tions are shown in Section 5, including a variation of the

recovery protocol for transferring the whole database to ay5tapase replication [16, 19]. On the top of Figure 1 re-
new replica. Some discussion with previous related works jies the user application that uses a JDBC driver interface t
are outlined in Section 6. Finally, conclusions end the pape jsgye transactions in the system. This driver is able to con-
nect to a given replica and in case of failure to redirect the
2. GSI and the Certification Process transaction to another available replica. We use a fulli+epl
cated approach so that each underlying DBMS has a copy
of the replicated database and provides Sl. The middleware
contains a replication (and recovery) protocol module that
is in charge of maintaining consistency and communicate

Collect and Apply
Priority Assignment Write Sets

Meta-Interface

The replication protocols supportingS! use a certifi-
cation process [9] for committing a transaction in the sys-
tem, exchanging only one message per transaction; i.e. they". . ;
are of constant interaction according to [22]. Neverttgles mth the rest of repllcas usllng.(BCS
read-only transactions will directly commit. They follow _ While developing replication and recovery protocols,
the Read One Write All AvailableROWAA) approach. it is a mus_t not to re-implement features provided by

Each database replica persistently stores the currenf® underlyingbDBMS. The DBMS performs these tasks
snapshot version they hold. A transactipiis firstly exe- much more efﬂmently. Therefore, t.he database replica-
cuted at its master replica (it obtains the current locapsna tL?n“mlddlt?ware archl;ectﬁre (see Figure %)) mf‘f‘,sF f°|||°W
shot versionT.star), the rest of replicas enter in the context t_e gray box approach The erte.set must ee iciently
of the transaction when an update transaction requests t(?'Cked_ up from theDBMS. The V_/rltes_e_t contains the up- _
commit. The protocol collects the updates performed by dated/inserted/removed tuple_s |dent|_f|_ed through the pri-
in the local database (the writeset of a transactiows) mary key. Furthermore, applying certified r.emote writesets
and is sent to the rest of replicas using the total order mul-"&Y beﬁpme agortgd due to ddesdlocks \;wth local trans?c—
ticast facility [6]. Upon delivery of this message at each tlons. T, IS can be circumvente y way 0 rgattemptmgt €
available replica the protocol locally performs a test te de apph_catlon of yvrltesets prqposed n [1_6]’ oritcan t_>e used a
cide if T can commit or must abort. It checks whethat's conflict detection mechanism [18]. This last technique uses
intersects with the writeset of any update transaction thatthhe co;curhrencydg:)ntrol s_uppor;c)lofdthe und_e:jrlngS.l I
committed aftefT.start If all intersections are empty, will Thereby, the middleware is enabled to provide a row-leve
commit; otherwise, it will abort. It is important to note tha cONtrol (as opposed to the usual coarse-grained table con-
all sites reach the same decision, since all writeset are-del tro_I), while all transgctlons (even those_ associated tatem
ered in the same order to all replicas. Hence, from this pre-Wrlte sets) are subject to the underlying concurrency con-

vious explanation each database replicaust persistently trol support. It periodically looks up blocked transacton

store, apart from its version numbstesion,) , aLog, that N the DBMS metadata (e.g., in theg_locks view of the
is a set of(snapshot version, WS) tuples. PostgresQL system catalog). It returns a set of pairs con-

sisting of the identifiers of the blocked and blocking trans-
actions.
3. System Model About the Group Communication System A GCS pro-
vides a communication and a membership service (see Fig-
In this work we took the advantage from our previous ure 1), supporting virtual synchrony [6]. Itis assumed a par
works [13] and other middleware architectures providing tially synchronous system andpartial amnesia craslj7]

failure model. We consider this kind of failures as we %
want to deal with node recovery after its failure. The

communication service features a total order multicast for ; |
message exchange among nodes through reliable channel No Message Exchangs ani o Becoverer is chasen
Membership services provide the notion of view (current (Delivery of <recavery_start Version> message)

connected and active nodes with a unique view identifier,

<update, Version +1, WS, .

V = (id,nodes)). Changes in the composition of a view L TEnTE 1
(addition or deletion) are delivered to the recovery protoc ~Gertificaion goes ol aspf Wissed Updis

Remate Messages Ignore
(N Certification) -
<end, Version,, YWs >

We assume a primary component membership [6]. In a pri- “EF””E‘VEEE_”i‘i
mary component membership, views installed by all nodes
are totally ordered (there are no concurrent views), and for

every pair of consecutive views there is at least one process Recaverer] Recovering
that remains operational in both views. TGES groups
messages delivered in views [6]. We assumnstrang vir- Figure 2. Example of the data transfer be-

tual synchrony [10], where the view change occurs at two tween the recoverer replica j and the recov-
stages, first it stops sending multicast messages and keeps ering replica i

processing previous multicast messages; and once the block

process is done, it will deliver the view change event. The
uniform reliable multicast facility [11] ensures that if autn
ticast message is delivered by a node (faulty or not) then. . L . -
it will be delivered to all available nodes in that view. All "9 protocol instance running imulticasts a message indi-

these characteristics permit us to know which writesets hav ;2::33 t?se‘ézr;stin?; iﬂ?sl‘?‘ns‘;ssp;l':?svégﬁi/s;g dN ()ngsriggﬁs
been applied in the context of an installed view. Y g '

o o . , that all messages uniformly delivered in the previous view
Assigning Priorities to Transactions The conflict detec- : . .
. . : ; ; . are delivered to all nodes that install the next view. Fur-
tion scheme is combined with a transaction priority scheme : . .
. - , , thermore, we make no assumption about if these pending
in the replication protocol [18]. For instance, we might de- o .
. o ; . messages have been certified at these nodes nor applied. As
fine two priority classes, with values 0 (assigned to local

transactions that have not started their commit phase) and {ar as the recovery protocol knows, all messages delivered

(for those local transactions that have started their cdmmi n the_ .Old view have been delivered to all available nodes
. . . transiting to the new one.
phase and also for those transactions associated to deliv- .
In parallel to this, a procedure takes place to choose a

ered write sets that have to be locally applied, either remot i Itis al d th is at least
or recovery ones). By default, it aborts the transactiom wit recoverer replica. 1t 1S aiso assumed there IS at least one
replica with the latest snapshot version in the system. This

the smallest priority but takes no action if both transatdio . ;
P y does notimply that the chosen recoverer has to be this node.

have the same priority level. The replication (respectde r This is hasize the behavior of th i
covery) protocol will take the appropriate action, e.g. r&bo 'S IS 10 emphasize the behavior of the Tecovery process.
we allow a replica to act as the recoverer even though it

ing the local transaction against a remote (recovery) trans h i d all th dates it h ding t |
action since the total order of the messages ensures that thi as not processed all the updates It has pending to apply.
Several optimizations can be included during the recovery

transaction is going to be finally aborted. . .)
process (e.g. the selection of multiple recoverer repjicas
but in order to keep the protocol description simpler we
4. Recovery Protocol have included them in Section 5. The recoverer replja (
starts a recovery thread that sends point-to-point message
Protocol Description. As a general overview of the main starting fromversion; + 1.
goal of our recovery protocol, let us say that one node Meanwhile, the recovering replica ignores all messages
(recoverer) will transfer the missed writesets to the recover- delivered from the total order multicast in that view. In
ing node arranged by their respective versions. This meansother words, no certification process is performed in the re-
that user application transactions executed on the recovercovering node. Those writesets coming from the recoverer
ing node will run undeGSlin a “slower” replica. Asitmay replica are directly applied in the database. This is a bette
be seen there are no restrictions to execute user transsictio approach than storing in a separate queue total order deliv-
in the replica and transactions executing at other replicasered messages, since they must pass a certification process
will behave as it nothing happens in the system. To achieve(and some of the messages will make no sense since their
this we take the ideas outlined in [9, 14]. associated writesets have to be finally aborted) that has al-
Arecoveringreplicajoins the group (see Figure 2), trig- ready been done by the recoverer. Thus, we have to be able
gering aview change. As part of this procedure, the recover-to define the point of stopping the recovery process at the

recoverer replica.

At some point, assuming that the recovery data trans-
fer is faster than applying writesets, the recoverer reache
its current snapshot version for transferring data. The re-
coverer replica sends itgersion; with a flag (see Fig-
ures 2 and 3, théend, Version;, WS;)).When the message
is processed at the recovering replica it will multicastrigs
the total order primitive) dstart_listening, i) message. The
recoverer will store all certified transactions between the
(end, Version,;, WS;) message has been sent and the delivery
of the (start_listening, i) message. The recovering replica
will listen to total order messages, however it will discard
every message, until its owstart_listening, i) message is
delivered; after that point, it will enqueue every remotesme
sage delivered({emote, Version, WSt) in Figure 2 and 3).

It will wait for the remainingLog data transfer. Hence, the

It contains the state of the replica in the sy
tem: crashed, alive, recovering andrecoverer.

status

currV The current installed view, &d, replicas) tu-

ple.

The previous installed view, &d, replicas)
tuple.

preV

Recoverer The recoverer replica identifier.

Log A set of (snapshot version, WS) tuples.

Version The current snapshot version.

CurrentVersion || The present snapshot being transferred to the

recovering replica.

LatestVersion The last snapshot version to be transferred

the recoverer, initially 0.

Table 1. State variables kept by each replica i

and their description

recovering replica is alive and is able to apply the enqueued
update message. The protocol is described in Figure 4 for

the rejoining and leaving process and its state variabkes ar

shown in Table 1 respectively. They are described in terms
of the procedures executed with every message and event o’

interest. Since they use shared variables, we assume ea
one of these procedures is executed in one atomic step. |
is important to note that we present the algorithm for a sin-
gle replica recovery just to simplify its presentation.dis
tension to multiple replica recovery is straightforwatuk t

recoverer will have as many recovery threads as nodes be

ing recovered and must individually monitor the delivery of
the (start_listening, k) messages delivery, withthe replica
identifier of an element in the set of recovering replicas.

<end, Versian,, YW3 >

I .
=
/fiertlfy Remu{:‘e\‘ isten Total Or?:i?ar‘
{Lan_sactlu_ns/ -

Messages
Digcard until
gstart_llstenlng‘ 1z
start_listening, i~ —— —
<remote, Version-, WS>

<remate, Yersion-, YWS- 3
>

<start_listening, i»
=update, Yersion +1, WS, o
/ .
- "Log Transfer™
until Yersion
Certified before }
=start_listening, i=
RS 7

Ay Missed Updites,
Remate Messages
ueued -

/,/
"~ Eng

—

<latest, Version,, WS, =

_Stan Certification of-
Remote Messages
e (ﬁl_lv_e replica) -

Time

Recovererj Recovering i

Figure 3. Finalization of the recovery process
at recovering replica

Replica Failure. Whenever a site failure occurs, a view
change event is fired, atiCS activity is stopped. Repli-

writesets pending to apply (due to the uniform delivery of
essages) and will not install this view until the previous
rocess starts. Hence, all available replicas have a consis
{ent state to continue processing new incoming transastion
I.e. they can use the@CSto multicast and deliver messages.

It is important to note that in case of a failure of a recoverer
node, the recovering node has to “restart” the recovering
process by sending the latest version it has applied (recall
we assume that there is at least one node in the new parti-
tion with all the versions installed). Whereas a recovering
replica failure only implies the interruption of the recove

ing thread at the recoverer node.

Replica Recovery At the time a replica rejoins the group

of replicas, a view change event is fired. As in the previ-
ous case of a replica failure, all message exchange is sus-
pended until all writesets have been applied. Along with
the new installed view a message containing\tigion, is

sent. One function is used to univocally determine among
all previous available nodes one site to act as the recoverer
replica. This function could implement many different load
balancing and recovery policies thereby making it arbitrar
ily complicated. For simplicity, we use the simplest possi-
ble version of this function: a single recoverer that receve
data partitions sequentially, and ignores any load batenci
issues.

On-going transactions in previously available nodes be-
have as normal. Furthermore, new user transactions are al-
lowed to execute in the recovering replica. This last asser-
tion is of key importance, since read-only transactions$ wil
be committed as in any other replica and update transac-
tions have to pass through the certification process and will
remain blocked. It is important to note that during the re-
covery process, only the writesets coming from the recov-
erer are processed. This implies that user transactioingtry

cas that are about to install the new view process thoseto update items belonging to a given writeset will be rolled

leave; (V)
i f Recoverer; ¢ V.replicas A status; = recovering t hen
multicast(V;.replicas, (recovery_start, i, Version))
el se if Recoverer; =i A 3k € Recovering,: k ¢ V;.replicas t hen
V k € Recovering;: k ¢ V;.replicas:
-- Stop its associated recovery thread;

msg_end; ((end, j, (snapshot version, WS)))

ConflictingTnxs := GetCon flicts(WS);

-- Underlying DB Abortion of Conflicting Transactions;
VT € ConflictingTnxs: Abort(T);

-- WS Applied and Conmtted as a DB Transacti on;
ApplyAndCommit(WS);

pre_ Vi := curr Vi, currV; := V. Log, := Log, U {(snapshot version, WS) };
Version; := Version; + 1;
join, (V) /I Total-order Multicast/

if i¢ pre.V;.replicast hen
multicast(V;.replicas, (recovery_start, i, Version));
status; := recovering;

pre-V; := currV;; currV; := V.

multicast(V;.replicas, (start_listening, i));
-- Start Listening Total -Order Messages.
-- Discard Them Until start_.listening.

msg_start_listening, ((start_listening, j))
i f (status; = Recoverer) t hen

LatestVersion; := Version;;

whi | e (CurrentVersion; < LatestVersion;) do
(snapshot version, WS) := GetTuple(CurrentVersion;);
CurrentVersion; := CurrentVersion,; + 1;
sendUnicast(j, (update, i, (snapshot version, WS)));
i f (CurrentVersion, = LatestVersion;) t hen

sendUnicast(j, (latest, (LatestVersion;, WSLatestVersioni).

el se if (status; = Recovering) t hen
-- Start Queuei ng remote Messages.

msg_recovery _start; ((recovery_start, j, Version;))
if (i = AssignRecoverer(curr_V;)) then

status; := recoverer;

CurrentVersion := Version;;

whi | e (CurrentVersion < Version;) do
(snapshot version, WS) := GetTuple(CurrentVersion);
CurrentVersion := CurrentVersion + 1;
sendUnicast(j, (update, i, (snapshot version, WS)));
i f (CurrentVersion = Version;) t hen

sendUnicast(j, (end, (Version;, WS;))).

msg_update; ((update, j, (snapshot version, WS)))
ConflictingTnxs := GetCon flicts(WS);
-- Underlying DB Abortion of Conflicting Transactions;
VT € ConflictingTnxs: Abort(T);
-- WS Applied and Conmitted as a DB Transaction;

msg_latest; ((latest, j, (snapshot version, WS)))

ConflictingTnxs := GetCon flicts(WS);

-- Underlying DB Abortion and Conflict Transaction;
VT € ConflictingTnxs: Abort(T);

-- WS Applied and Conmtted as a DB Transacti on;

ApplyAndCommit(WS);) ApplyAndCommit(WS);
Log, := Log; U {(snapshot version, WS)}; Log, := Log, U {(snapshot version, WS)};
Version; := Version; + 1. Version; := Version; + 1;

-- Process remote Delivered Messages.

Figure 4. Specific recovery protocols action and message eve nts executed at replica

back. Moreover, at the end of the recovery process therefunction), the recovery protocol must abort those conflict-
will not be any update user transaction blocked. Those thating transactions being executed at the recovering replica,
pass the certification process in the remainder replica will the mechanism used here is the same as the one used in [18]
come in a recovery data transfer and those that failed will and highlighted in Section 3. Recall that@sl! only write

be rolled back by applying a missed writeset. operations do conflict, these local transactions are gaing t
Recovery Thread A recovery thread looks for the last be finally aborted since there are more recent transactions,
shapshot version of the recovering replica. We can assumdrom the snapshot version point of view, than they are. The
that if there are several nodes recovering, the recovetler wi process of recovery is continued until the recoverer sends
look for the lowest common last snapshot version for all the (end, Version;, WS;) to the recovering replica. This ver-
recovering replicas and starts multicasting updates gusin sion number is stored iQurrentVersion; for determining
uniform reliable service) from theog,, from that version the remaindetog, transfer.

on. The recovering nodes discard those recovery messageBinishing the Missed Data Transfer Process When
coming from snapshots they already got. We assume thathe previous message is received at the recovering
read and write operations performed by the recovery andreplica, it will multicast (total order primitive) the
replication protocols in the persistent storage are redlia (startlistening, k). This message will be silently discarded
mutual exclusion. at all replicas but the recoverer one. The delivery of this
Transferring Missing Updates. The data transfer to message marks the end of itsg; data transfer, as the re-
the recovering node flows as depicted in the outline covery protocol reads the currevdrsion; and assigns it to

of the recovery protocol. The recoverer sends severalthe variableLatestVersion;. This second data transfer will
msg_update((snapshot version, WS)) tuples are applied one comprise from versioQurrentVersion; to LatestVersion; of

after the other according to iseapshot version. Eachtuple theLog;. The data transfer is identical to the first one. How-
trivially passes the certification phase, commits and,ether ever, the last message is flaggedasst just to emphasize,
fore, Versiony, is increased. Of course, those changes con-that there are no more pending updates to be transferred.
tained in the delivered writeset have to be applied in the Thus, the recovering replica is alive.

underlying database. Before the writeset is applied, by wayQueueing of Remote MessagesIn parallel to the pre-

of a recovery transaction (with th&pply AndCommit(WS) vious paragraph, the recovering replica will start listeni

from incoming messages of the total order service, althoughProof (Outline). We have to consider the cases when the re-
all of them will be discarded till thestart listening, k) coverer node fails. Otherwise, the recovery process resnain
message is delivered. Once it is delivered, it will queue unaffected. If the recoverer fails, it will force a “rejoind
(remote, Versiont, WSt) messages (recall from Figures 2 tell its latest recoveredlersion; so that a recovery process
and 3) coming from th&CS Once all missed updates of will take place forit. Hence, no updates will be missed since
the second phase are applied, it will start processing thesave will be under the circumstances of Lemma 1. Assuming

messages. that the time length of installed views is stable enough to
eventually achieve the recovery of a replica without contin
4.1. Outline of its Correctness Proof uously failing recoverers. O

. . , Theorem 1(GSIRecovery) Upon successful completion of
: we mak_e a basic assumphon ab(.)l_“ the system’s behaVihe recovery procedure, a recovering replica reflects aestat
lor- .ther(.e Is always a primary partition gnd at least one compatible with th&sSlexecution that took place.
replica with all the versions installed transits from onewi
to the next one. Proof (Outline). According to [17] it is sufficient to show

) . . that if a given replication (or recovery) protocol using

Lemma 1 (Absence of Lost Updates in Executions without g replicas provides global atomicity and commits update
View Changes) If no failures and view changes occur dur- transactions in the same order at all replicas it provisis
ing the recovery procedure, and the recovery procedure is 1o prove that this implementation is deterministic and
executed to completion, a noglee N can resume transac- gpeysGsi rules, we need to show two properties. The first
tion processing in that partition without missing any upglat property is that at the certification efall replicas have the
sameLog andVersion. From the replication protocol point

. . of view, as we are assuming a replication protocol that en-
rrv} as the set of recovery transactions exclusively ex- ’ 9 P P

ecuted at the recovering replica associated to each SefuresGSI_[Z, 9, 16, 18], the concurrent comrmtte_d transac-
of tuples that must be applied. Thus, the set of tions during the recovery process are applied in the same

et v e v 0t s el O e rare by Lom.
WSV+2>7"‘7<‘/j - 17WSVj*1>7<‘/J'7WSVj>7'“7<LV -1, ' Y

WSLy_1), (LV,WS.1)}. In the same way, let us denote produce lost updates and missing updates in the recovering
-1/, I . L]

{ts,...,ts} as the set of concurrent committed transactions rep_lica (nor at any qther avallable node, since the_ certifi-

during the recovery process, assume they are ordered by thgathn process remains the same at the r_est of replicas) are

way they are inserted in thevg. The values, andt; stand applied in the same order they are committed. =

for the begin and the end of the recovery process. o

Recovery transactions are sequentially executed at thed- Optimizations

recovering replica by what it is stored at theog, of the

recoverer replicg. Concurrent executing transactions are In this Section we present some optimizations based on

certified by the replication protocol at the rest of replicas hintsincludedin[9, 14] as well as several novel approaches

Hence, they are appended into they, that must be trans- The garbagecollection of the Log . As it can be inferred the

ferred, more precisely the interval pf, ¢v,], whereb < V;, Log may become incredibly large and, therefore, difficult to

can be already transferred to the recovering node, i.e. maymnanage. There can be a thread at each replibat period-

be the recovery process is so fast that all concurrent transically multicasts its current versioversion;, and listens for

actions have been applied or so slow that no transaction haghcoming versions. Their respectiveg; can be trimmed

been certified at the recoverer node. In any case, the inserto the minimum version collected from all (available or not)

tion and application of these transactions is determined byreplicas. Of course, there exists a trade-off between addi-

the way they are inserted in theg,. The rest of the con- tion of new replicas (e.g. due to a high workload) and the

current transactionsi(; + 1, ts]) will be applied in the phase garbage collection since it must be omitted or, otherwise,

just after the total ordetstart.listening,i) message ex- some replica must be stopped to transfer in the background,

change to determine the finalization of the recovery processits current state to the new replica; afterwards, both issue

Concurrent transactions frofey + 1,...) will be certified the beginning of a recovery process for both replicas.

by the replication in the recovering node as it has finally Distribution of the recovery process The solution pro-

achieved the recovery of its missed data. O posed in our work penalized the performance of the recov-
ering replica. This can be achieved by appointing different

Lemma 2 (Absence of Lost Updates after a View Change) recoverers for different partitions and/or by using semera

A recovering replica in viewV; that transits to view; + 1 covery threads at the recoverer. However, as they may differ

resumes the recovery process without missing any update. in their Version, the function that determines the recoverers

Proof (Outline). Let us denote{r,.1,7. 2,...,7v;,...,

must know the latest version in the system. This can be in- 5
cluded in the initial message of the recovery process in con-
junction with the latest committed version in the recovgrin |

replica. The recovery process may be uniformly distributed N Message Exehamn o e overen s chosen
with the proper range of version intervals. However, sdecia (VeI s R SR mEssee)
attention has to be paid during failures in the data recovery J%
process (specially to recoverer replicas) and possible out - TABIES Transfer —

of order delivery ofmsg_update({snapshot version, WS)) \\(c:_eur'r[}glclgfiu\fgsalgg‘/un)/ - ~Bump Tables ™ -
messages. On the other hand, there may exist a grouping <rem0te‘\/e_r§i@;\i\fii ' -ﬂﬁi“&iﬁﬁ?éﬁ&ﬁﬂg
process in the recovery thread so that several missed tuples LN

of theLog can be sent in a single message during the missed ___pswpateVersion WS> |

data transfer. (it ks Gt versiony AT e,
Marking transactions (as read-only or update) This is <remme.VErsﬁi§1§fs”:”” 9022 2 R iNo Certfcatian). - 4
specially useful in replicas that belong to a minority par- <end, Version, WS, »

tition and have been forced to shutdown due to a network

partition such as WAN environments. As we are ensuring Recaverer | Recovering |

GSlwe may allow the execution of read-only transactions to
applications even though they are “offline”. This can be an Figure 5. Finalization of the recovery process
interesting approach since most of the operatiorn&ia-w at recovering replica i

are read statements.

Addition of new replicas. Up to know we have coped with
what can be considered as “short length” failures (due to its
durationin time or the number of updated items). If we want
to add a new replica with this recovery protocol, no garbage
collection can be done. We have to store all changes don

fr]?rrr the database initial ve:al_on_. Let USVSEe arough OUtlll_neprotocols relying on total order message delivery for guar-
of how we can re-arrange this 1Ssue. en anewrep ICaanteeinglcs [1]. These recovery techniques are based in

.(o.r an old one that has been crashed for a Iong time perIOd)the use of d.og that varies from blocking the system for
joins the system, the recovery process starts in the same wa;

. L) Yransferring the missed data from theg to relaxing the
as the previous replication protocol. Instead of tranﬁig_rr blocking need of the system and monitor the state of ongo-
the Log; of _the recoverey we start a read-only j[ran_sactlon ing transactions during a view change that may include the
(non-blocking) with the current snapshot versigetsion;.

. S writeset of these transactions during the recovery prdoess
All the tables are transferred to the recovering (or joifiing their commit message. In our work we take the advantage of

Ghe Log used for the certification process in order to deter-
mine the data to be transferred, however we do not need to
perform additional tasks on ongoing transactions nor block
ing the system. Furthermore, we permit the execution of
transactions in the recovering node.

6. Related Works We have based our recovery proposal in the ideas pro-

posed in [14]. Thus, its recovery ideas are pretty similar
There are several works in the literature that propose sev-to the ones presented in this paper. However, we want to
eral alternatives to accomplish database recovery, mainlyemphasize the differences. The most important is that the
due to the use of GCS for an efficient way to provide data- database is split into partitions, such as stored procedure
base replication (i.e. total order of message deliveries, v of a web page. Ongoing transactions are never blocked by
tual synchrony, etc.). Most of the replication protocolatth the execution of the recovery process. This protocol en-
have been proposed are best suitedLfasreplication pro- sures the maintenance of theéSdue to the construction of
tocols [3, 12, 14, 15] while only hints (up to our knowledge) database partitions that orders the execution of confijctin
about recovery procedures feslreplication protocols [9]. transactions due to the total order message delivery. Our

Thus, our work presents a novel approach because it presolution is not restricted to certain patterns of transestj

tends to work usingSl as its default consistency level. the application is free to issue any kind®®L statements.

In [15] several solutions to on-line reconfiguration in Moreover, transactions may be issued at any replica, includ
replicated databases are proposed making use of view syning the recovering one. This is obtained thanks toGise
chrony and enriched view synchrony properties; they do notlevel we are offering.

pretend to present one as the best among the different solu-
tions. In [12], three recovery protocols have been also pro-
osed using the virtual synchrony properties for replarati

recovering protocol. Once all tables are transferred it con
tinues with theLog; transfer of the missed updates as with
our original proposal. This can be best seen in Figure 5.

Finally, we want to compare our solution to our previous [2] J. E. Armendariz, J. R. Juarez, J. R. G. de Mendivil,
work [3] that ensures the recovery fboESusing the proper- H. Decker, and F. D. MufioZk-Bound GSI: A flexible data-
ties of uniform delivery [11] of messages combined with the base replication protocol. ISBAC ACM Press, 2007.
virtual synchrony. These facilities provide an easy way to [3] J- E. Armendariz, F. D. Mufioz, H. Decker, J. R. Juaew
feature node recovery as it is possible to group the updates 9 R- G- de Mendivil. A protocol for reconciling recovery
missed by a faulty node by the installed view where they ggSGhlgh-avaulabmty in replicated databasdsNCS 4263,
happened. This information is stored as recovery metadata [4)

: h e] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J.
in the database. Once a node recovers from a failure, it is O'Neil, and P. E. O'Neil. A critique of ANSI SQL isola-

established a set of partitions at all available nodes (asyma tion levels. INSIGMOD, pages 1-10. ACM Press, 1995.

as views missed by the recovering node). Thus, those avail- [5] P. A. Bernstein, V. Hadzilacos, and N. GoodmaRoncur-
able nodes that are neither recoverer nor recovering nodes rency Control and Recovery in Database SysteAddison
will access these partitions as usual. However they will get Wesley, 1987.

blocked when they propagate their updates and they con- 6] G. F:hockler.,.l. Kgidar, and R. Vitenperg. Group communi-
flict with a recovery partition at the recovering or the recov ;itr'snssgij;'zg?t'zgzz ZgngrehenS|ve StukigM Comput.
erer nod_es. The recovering node will not be able to access [7] F. Cristian. Understaﬁding fault-tolerant distribdisystems.
these opjects. The recovering no_d_e may start acceptl_ng user- " ~omun. ACM34(2):56-78, 1991.

transactions as soon as the partitions are set up on it, even [8] K. Daudjee and K. Salem. Lazy database replication with
though it is not up to date. We overcome the limitations of snapshot isolation. INLDB, pages 715-726. ACM, 2006.
blocking update transactions and read-only transactions i [9] S. Elnikety, F. Pedone, and W. Zwaenopoel. Databasé repl
the recovering node (we proposed to run these transactions cation using generalized snapshot isolationSRDS$ 2005.

in SI). Moreover, we permit that transactions to be immedi- [10] R. Friedman and R. van Renesse. Strong and weak virtual

[11] V. Hadzilacos and S. Toueg. A modular approach to fault-

tolerant broadcasts and related problems. Technical Repor
TR94-1425, Cornell U., 1994.

. . [12] J. Holliday. Replicated database recovery using roadti
In this paper we have presented a middleware database ~ .,y munication. IINCA pages 104-107. I[EEE-CS, 2001.

recovery protocol whose main novelty is its non-blocking [13] L. Iran, H. Decker, R. de Juan, F. Castro, J. E. Armeizja
property for on-going transactions even at the recovering and F. D. Mufioz. MADIS: A slim middleware for database
node (except those update transactions but only at commit replication.LNCS 3648, 2005.

time). This protocol providessl [9] in comparison with [14] R. Jiménez, M. Patifo, and G. Alonso. Non-intrusipey-
previous solutions that were suited fo8S[3, 12, 14, 15]. allel recovery of replicated data. BRD$2002. _
Furthermore, we have outlined its correctness for provid- [1°] B- Kemme, A. Bartoli, and. Babaoglu. Online reconfig-
ing GSI. Another feature of this protocol is that it proposes uration in replicated databases based on group communica-
two alternatives for achieving data state transfer, either tion. InDSN IEEE-CS, 2001. L .

) 1 [16] Y. Lin, B. Kemme, M. Patifio, and R. Jiménez. Middlewar
whole database or only the missed updates. This can be' "~ ;3404 data replication providing snapshot isolatiorSI-
managed by the system administrator, depending on the MOD, 2005.
kind of requirements of the application used. [17] J. R. Mendivil, J. E. Armendariz, J. R. Garitagoitia,ran,

This recovery protocol does not need any additional and F. D. Mufioz. Non-blocking ROWA Protocols Imple-
metadata from the ones already needed for the certified _ ment GSI Using S Replicas. T.R. ITI-ITE-06/04, 2006.
replication protocols providings! [2, 9, 16, 18]. The re- [18] F.D. Mufioz, J. Pla, M. 1. Ruiz, L. Irn, H. Decker, J. &~
joining replica will send its current snapshot version and menqlanz_, an_d J- R. G. de Mendivil. Managing transaction

. : . conflicts in middleware-based database replication achit
one node will be elected as the recoverer replica that will

. . tures. INSRD$ 2006.
start a recovering thread that transfers data from_tlygn [19] M. Patifio, R. Jiménez, B. Kemme, and G. Alonso.

the background to the recovering replica. This permits the MIDDLE-R: Consistent database replication at the middle-
replication protocol to remain unaffected. Finally, we éav ware level. ACM TOCS 23(4):375-423, 2005.
adapted several optimizations somehow outlined in [9, 14] [20] C. Plattner, G. Alonso, and M. Tam&zsu. Indexing mul-
and we have proposed some other novel optimizations. tidimensional time-series/LDB J, 2006. Accepted
[21] TPC-W.htt p://wwv. t pc. or g. 2006.
[22] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme, and
References G. Alonso. Database replication techniques: A three pa-
rameter classification. ISRDS 2000.
[23] S. Wu and B. Kemme. Postgres-R(Sl): Combining replica
[1] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Expttoi control with concurrency control based on snapshot isola-
ing atomic broadcast in replicated databaseNCS 1300, tion. InICDE. IEEE-CS, 2005.
1997.

7. Conclusions

