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Abstract

Middleware database replication is a way to increase
availability and afford site failures for dynamic content
websites. There are several replication protocols that en-
sure data consistency for these systems. The most attractive
ones are those providing Generalized Snapshot Isolation
(GSI), as read operations never block. These replication
protocols are based on the certification process, however,
up to our knowledge, they do not cope with the recovery of
a replica. In this paper we propose a recovery protocol that
ensuresGSI (we provide an outline of its correctness) that
does not interfere with user transactions and permits the ex-
ecution of transactions in the recovering node, even though
the recovery process has not finished.

1. Introduction

Web servers usually provide dynamic content that is per-
sistently stored in aDBMS. It is well-known that the replica-
tion of the database in different replicas geographically dis-
tributed improves data availability and scaling performance.
On the other hand, data consistency is sacrificed. Due to
this, several data consistency criteria have been introduced:
One-Copy Serializable (1CS) [5], and Generalized Snapshot
Isolation (GSI) [9], among others [17, 16, 20].1CSpresents
some drawbacks for dynamic content web page generation
such as read operations may become blocked, which are
most of the operations for web commerce applications such
as TPC-W standard states [21]. As a consequence of this
and because most of commercial and open-source databases
provide Snapshot Isolation (SI) [4], theGSI correctness cri-
terion is used.

GSI states that a transaction does not necessarily need
to observe the “latest” snapshot, as opposite toSI in a cen-
tralized environment. It can observe an older snapshot, and
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many properties as those in (centralized) snapshot isolation
continue to hold. In other words, transactions will see a
consistent snapshot and they will not become blocked, but
at the price of increasing the abortion rate as updates may
collide with other more “recent” transactions. This is not a
major drawback since inTPC-Wmost of the operations are
read-only (at most 50% in theOrdering mixwith a negligi-
ble conflict rate) [21]. This is of high importance from the
point of view of replica failure and its recovery (or even for
joining new replicas).

The main concern of recovery techniques is to penal-
ize as little as possible on-going transactions (i.e. aborting
transactions during the recovery process) and transferring
the data in a manner that the new joining replica may be-
come available as soon as possible (i.e. issuing new incom-
ing user transactions on it too). This last point is whereGSI
comes in handy when dealing with the recovery process.
The rejoining replica will have a (probably older) consis-
tent snapshot and may accept user transactions as soon as
the replica is available.

Replication protocols developed for thisGSIconsistency
level [2, 8, 9, 16, 18, 23], to the best of our knowledge, lack
of recovery solutions in case of a rejoining node. Some
hints are outlined in [9] but there is not a formal presenta-
tion of the solution. In this paper we take the recovery ideas
from [9] and the recovery protocol presented in [14] both
taking advantage of the facilities provided by a Group Com-
munication System (GCS) [6], mainly strong virtual syn-
chrony [10]). Most of these replication protocols already
proposed are to be used in middleware architectures, guar-
anteeing their portability among severalDBMSs and also
standard interfaces for user applications (e.g.JDBC). In [14]
a recovery protocol for a1CS replication protocol [19] is
introduced. This replication protocol presents the incon-
venience that the application programmer is forced to pre-
declare the structure of each transaction or to send transac-
tions as full blocks [19]. This will not be the case for our
solution, we only take the approach they follow in the re-
covery data transfer: how it is started, how it goes and how
it finishes. In this paper, we present aGSI recovery protocol



that works with any of theGSI replication protocols already
proposed [2, 9, 16, 18]. Thus, we may obtain that ongoing
transactions on previously alive replicas do not need to be
aborted, they can continue working as normal and the trans-
action load can be balanced to the new replica as soon the
GCS states it is reachable from the communications point
of view. Furthermore, for the rejoining node the recovery
data transfer is nothing more than a “delayed” propagation
of writesets.

The rest of this paper is organized as follows. Section 2
is devoted to explain the main characteristics of replication
protocols providingGSI that could use our recovery pro-
posal. Section 3 introduces the middleware architecture
used in this work. The recovery protocol is described, along
an outline of its correctness, in Section 4. Some optimiza-
tions are shown in Section 5, including a variation of the
recovery protocol for transferring the whole database to a
new replica. Some discussion with previous related works
are outlined in Section 6. Finally, conclusions end the paper.

2. GSI and the Certification Process

The replication protocols supportingGSI use a certifi-
cation process [9] for committing a transaction in the sys-
tem, exchanging only one message per transaction; i.e. they
are of constant interaction according to [22]. Nevertheless,
read-only transactions will directly commit. They follow
the Read One Write All Available (ROWAA) approach.

Each database replica persistently stores the current
snapshot version they hold. A transactionT is firstly exe-
cuted at its master replica (it obtains the current local snap-
shot version,T.start), the rest of replicas enter in the context
of the transaction when an update transaction requests to
commit. The protocol collects the updates performed byT
in the local database (the writeset of a transaction,T.WS)
and is sent to the rest of replicas using the total order mul-
ticast facility [6]. Upon delivery of this message at each
available replica the protocol locally performs a test to de-
cide if T can commit or must abort. It checks whetherT.WS
intersects with the writeset of any update transaction that
committed afterT.start. If all intersections are empty,T will
commit; otherwise, it will abort. It is important to note that
all sites reach the same decision, since all writeset are deliv-
ered in the same order to all replicas. Hence, from this pre-
vious explanation each database replicak must persistently
store, apart from its version number (Versionk) , aLogk that
is a set of〈snapshot version, WS〉 tuples.

3. System Model

In this work we took the advantage from our previous
works [13] and other middleware architectures providing

Figure 1. An example of a replica inside a
database middleware architecture

database replication [16, 19]. On the top of Figure 1 re-
lies the user application that uses a JDBC driver interface to
issue transactions in the system. This driver is able to con-
nect to a given replica and in case of failure to redirect the
transaction to another available replica. We use a full repli-
cated approach so that each underlying DBMS has a copy
of the replicated database and provides SI. The middleware
contains a replication (and recovery) protocol module that
is in charge of maintaining consistency and communicate
with the rest of replicas using aGCS.

While developing replication and recovery protocols,
it is a must not to re-implement features provided by
the underlyingDBMS. The DBMS performs these tasks
much more efficiently. Therefore, the database replica-
tion middleware architecture (see Figure 1) must follow
the “gray box approach”. The writeset must be efficiently
picked up from theDBMS. The writeset contains the up-
dated/inserted/removed tuples identified through the pri-
mary key. Furthermore, applying certified remote writesets
may become aborted due to deadlocks with local transac-
tions. This can be circumvented by way of reattempting the
application of writesets proposed in [16], or it can be used a
conflict detection mechanism [18]. This last technique uses
the concurrency control support of the underlyingDBMS.
Thereby, the middleware is enabled to provide a row-level
control (as opposed to the usual coarse-grained table con-
trol), while all transactions (even those associated to remote
write sets) are subject to the underlying concurrency con-
trol support. It periodically looks up blocked transactions
in the DBMS metadata (e.g., in thepg locks view of the
PostgreSQL system catalog). It returns a set of pairs con-
sisting of the identifiers of the blocked and blocking trans-
actions.
About the Group Communication System. A GCSpro-
vides a communication and a membership service (see Fig-
ure 1), supporting virtual synchrony [6]. It is assumed a par-
tially synchronous system and apartial amnesia crash[7]



failure model. We consider this kind of failures as we
want to deal with node recovery after its failure. The
communication service features a total order multicast for
message exchange among nodes through reliable channels.
Membership services provide the notion of view (current
connected and active nodes with a unique view identifier,
V = 〈id, nodes〉). Changes in the composition of a view
(addition or deletion) are delivered to the recovery protocol.
We assume a primary component membership [6]. In a pri-
mary component membership, views installed by all nodes
are totally ordered (there are no concurrent views), and for
every pair of consecutive views there is at least one process
that remains operational in both views. TheGCS groups
messages delivered in views [6]. We assume astrongvir-
tual synchrony [10], where the view change occurs at two
stages, first it stops sending multicast messages and keeps
processing previous multicast messages; and once the block
process is done, it will deliver the view change event. The
uniform reliable multicast facility [11] ensures that if a mul-
ticast message is delivered by a node (faulty or not) then
it will be delivered to all available nodes in that view. All
these characteristics permit us to know which writesets have
been applied in the context of an installed view.
Assigning Priorities to Transactions. The conflict detec-
tion scheme is combined with a transaction priority scheme
in the replication protocol [18]. For instance, we might de-
fine two priority classes, with values 0 (assigned to local
transactions that have not started their commit phase) and 1
(for those local transactions that have started their commit
phase and also for those transactions associated to deliv-
ered write sets that have to be locally applied, either remote
or recovery ones). By default, it aborts the transaction with
the smallest priority but takes no action if both transactions
have the same priority level. The replication (respective re-
covery) protocol will take the appropriate action, e.g. abort-
ing the local transaction against a remote (recovery) trans-
action since the total order of the messages ensures that this
transaction is going to be finally aborted.

4. Recovery Protocol

Protocol Description. As a general overview of the main
goal of our recovery protocol, let us say that one node
(recoverer) will transfer the missed writesets to the recover-
ing node arranged by their respective versions. This means
that user application transactions executed on the recover-
ing node will run underGSI in a “slower” replica. As it may
be seen there are no restrictions to execute user transactions
in the replica and transactions executing at other replicas
will behave as it nothing happens in the system. To achieve
this we take the ideas outlined in [9, 14].

A recovering replicai joins the group (see Figure 2), trig-
gering a view change. As part of this procedure, the recover-

Figure 2. Example of the data transfer be-
tween the recoverer replica j and the recov-
ering replica i

ing protocol instance running ini multicasts a message indi-
cating theVersioni of the last applied writeset. No message
activity is done until this message is delivered. This means
that all messages uniformly delivered in the previous view
are delivered to all nodes that install the next view. Fur-
thermore, we make no assumption about if these pending
messages have been certified at these nodes nor applied. As
far as the recovery protocol knows, all messages delivered
in the old view have been delivered to all available nodes
transiting to the new one.

In parallel to this, a procedure takes place to choose a
recoverer replica. It is also assumed there is at least one
replica with the latest snapshot version in the system. This
does not imply that the chosen recoverer has to be this node.
This is to emphasize the behavior of the recovery process:
we allow a replica to act as the recoverer even though it
has not processed all the updates it has pending to apply.
Several optimizations can be included during the recovery
process (e.g. the selection of multiple recoverer replicas);
but in order to keep the protocol description simpler we
have included them in Section 5. The recoverer replica (j)
starts a recovery thread that sends point-to-point messages
starting fromVersioni + 1.

Meanwhile, the recovering replica ignores all messages
delivered from the total order multicast in that view. In
other words, no certification process is performed in the re-
covering node. Those writesets coming from the recoverer
replica are directly applied in the database. This is a better
approach than storing in a separate queue total order deliv-
ered messages, since they must pass a certification process
(and some of the messages will make no sense since their
associated writesets have to be finally aborted) that has al-
ready been done by the recoverer. Thus, we have to be able
to define the point of stopping the recovery process at the



recoverer replica.
At some point, assuming that the recovery data trans-

fer is faster than applying writesets, the recoverer reaches
its current snapshot version for transferring data. The re-
coverer replica sends itsVersionj with a flag (see Fig-
ures 2 and 3, the〈end, Versionj , WSj〉).When the message
is processed at the recovering replica it will multicast (using
the total order primitive) a〈start listening, i〉 message. The
recoverer will store all certified transactions between the
〈end, Versionj , WSj〉 message has been sent and the delivery
of the 〈start listening, i〉 message. The recovering replica
will listen to total order messages, however it will discard
every message, until its own〈start listening, i〉 message is
delivered; after that point, it will enqueue every remote mes-
sage delivered (〈remote, VersionT, WST〉 in Figure 2 and 3).
It will wait for the remainingLog data transfer. Hence, the
recovering replica is alive and is able to apply the enqueued
update message. The protocol is described in Figure 4 for
the rejoining and leaving process and its state variables are
shown in Table 1 respectively. They are described in terms
of the procedures executed with every message and event of
interest. Since they use shared variables, we assume each
one of these procedures is executed in one atomic step. It
is important to note that we present the algorithm for a sin-
gle replica recovery just to simplify its presentation. Itsex-
tension to multiple replica recovery is straightforward, the
recoverer will have as many recovery threads as nodes be-
ing recovered and must individually monitor the delivery of
the 〈start listening, k〉 messages delivery, withk the replica
identifier of an element in the set of recovering replicas.

Figure 3. Finalization of the recovery process
at recovering replica i

Replica Failure. Whenever a site failure occurs, a view
change event is fired, allGCS activity is stopped. Repli-
cas that are about to install the new view process those

status It contains the state of the replica in the sys-
tem: crashed, alive, recovering andrecoverer.

curr V The current installed view, a〈id, replicas〉 tu-
ple.

pre V The previous installed view, a〈id, replicas〉
tuple.

Recoverer The recoverer replica identifier.

Log A set of〈snapshot version, WS〉 tuples.

Version The current snapshot version.

CurrentVersion The present snapshot being transferred to the
recovering replica.

LatestVersion The last snapshot version to be transferred by
the recoverer, initially 0.

Table 1. State variables kept by each replica i

and their description

writesets pending to apply (due to the uniform delivery of
messages) and will not install this view until the previous
process starts. Hence, all available replicas have a consis-
tent state to continue processing new incoming transactions,
i.e. they can use theGCSto multicast and deliver messages.
It is important to note that in case of a failure of a recoverer
node, the recovering node has to “restart” the recovering
process by sending the latest version it has applied (recall
we assume that there is at least one node in the new parti-
tion with all the versions installed). Whereas a recovering
replica failure only implies the interruption of the recover-
ing thread at the recoverer node.
Replica Recovery. At the time a replicak rejoins the group
of replicas, a view change event is fired. As in the previ-
ous case of a replica failure, all message exchange is sus-
pended until all writesets have been applied. Along with
the new installed view a message containing theVersionk is
sent. One function is used to univocally determine among
all previous available nodes one site to act as the recoverer
replica. This function could implement many different load
balancing and recovery policies thereby making it arbitrar-
ily complicated. For simplicity, we use the simplest possi-
ble version of this function: a single recoverer that recovers
data partitions sequentially, and ignores any load balancing
issues.

On-going transactions in previously available nodes be-
have as normal. Furthermore, new user transactions are al-
lowed to execute in the recovering replica. This last asser-
tion is of key importance, since read-only transactions will
be committed as in any other replica and update transac-
tions have to pass through the certification process and will
remain blocked. It is important to note that during the re-
covery process, only the writesets coming from the recov-
erer are processed. This implies that user transactions trying
to update items belonging to a given writeset will be rolled



leavei(V)
if Recovereri /∈ V.replicas ∧ statusi = recovering then

multicast(Vi.replicas, 〈recovery start, i, Version〉)
else if Recovereri = i ∧ ∃ k ∈ Recoveringi: k /∈ Vi.replicas then
∀ k ∈ Recoveringi: k /∈ Vi.replicas:
-- Stop its associated recovery thread;

pre Vi := curr Vi; curr Vi := V .

joini(V)
if i /∈ pre Vi.replicas then

multicast(Vi.replicas, 〈recovery start, i, Version〉);
statusi := recovering;

pre Vi := curr Vi; curr Vi := V .

msg recovery starti(〈recovery start, j, Versionj〉)
if (i = AssignRecoverer(curr Vi)) then

statusi := recoverer;
CurrentVersion := Versionj ;
while (CurrentVersion < Versioni) do
〈snapshot version, WS〉 := GetTuple(CurrentVersion);
CurrentVersion := CurrentVersion + 1;
sendUnicast(j, 〈update, i, 〈snapshot version, WS〉〉);
if (CurrentVersion = Versioni) then

sendUnicast(j, 〈end, 〈Versioni, WSi〉〉).

msg updatei(〈update, j, 〈snapshot version, WS〉〉)
ConflictingTnxs := GetConflicts(WS);
-- Underlying DB Abortion of Conflicting Transactions;
∀T ∈ ConflictingTnxs: Abort(T);
-- WS Applied and Committed as a DB Transaction;
ApplyAndCommit(WS);
Logi := Logi ∪ {〈snapshot version, WS〉};
Versioni := Versioni + 1.

msg endi(〈end, j, 〈snapshot version, WS〉〉)
ConflictingTnxs := GetConflicts(WS);
-- Underlying DB Abortion of Conflicting Transactions;
∀T ∈ ConflictingTnxs: Abort(T);
-- WS Applied and Committed as a DB Transaction;
ApplyAndCommit(WS);
Logi := Logi ∪ {〈snapshot version, WS〉};
Versioni := Versioni + 1;
// Total-order Multicast//
multicast(Vi.replicas, 〈start listening, i〉);
-- Start Listening Total-Order Messages.
-- Discard Them Until start listening.

msg start listeningi(〈start listening, j〉)
if (statusi = Recoverer) then

LatestVersioni := Versioni;
while (CurrentVersioni < LatestVersioni) do
〈snapshot version, WS〉 := GetTuple(CurrentVersioni);
CurrentVersioni := CurrentVersioni + 1;
sendUnicast(j, 〈update, i, 〈snapshot version, WS〉〉);
if (CurrentVersioni = LatestVersioni) then

sendUnicast(j, 〈latest, 〈LatestVersioni, WSLatestVersioni
〉〉).

else if (statusi = Recovering) then
-- Start Queueing remote Messages.

msg latesti(〈latest, j, 〈snapshot version, WS〉〉)
ConflictingTnxs := GetConflicts(WS);
-- Underlying DB Abortion and Conflict Transaction;
∀T ∈ ConflictingTnxs: Abort(T);
-- WS Applied and Committed as a DB Transaction;
ApplyAndCommit(WS);
Logi := Logi ∪ {〈snapshot version, WS〉};
Versioni := Versioni + 1;
-- Process remote Delivered Messages.

Figure 4. Specific recovery protocols action and message eve nts executed at replica i

back. Moreover, at the end of the recovery process there
will not be any update user transaction blocked. Those that
pass the certification process in the remainder replica will
come in a recovery data transfer and those that failed will
be rolled back by applying a missed writeset.
Recovery Thread. A recovery thread looks for the last
snapshot version of the recovering replica. We can assume
that if there are several nodes recovering, the recoverer will
look for the lowest common last snapshot version for all
recovering replicas and starts multicasting updates (using
uniform reliable service) from theLogk from that version
on. The recovering nodes discard those recovery messages
coming from snapshots they already got. We assume that
read and write operations performed by the recovery and
replication protocols in the persistent storage are realized in
mutual exclusion.
Transferring Missing Updates. The data transfer to
the recovering node flows as depicted in the outline
of the recovery protocol. The recoverer sends several
msg update(〈snapshot version, WS〉) tuples are applied one
after the other according to itssnapshot version. Each tuple
trivially passes the certification phase, commits and, there-
fore, Versionk is increased. Of course, those changes con-
tained in the delivered writeset have to be applied in the
underlying database. Before the writeset is applied, by way
of a recovery transaction (with theApplyAndCommit(WS)

function), the recovery protocol must abort those conflict-
ing transactions being executed at the recovering replica,
the mechanism used here is the same as the one used in [18]
and highlighted in Section 3. Recall that inGSI only write
operations do conflict, these local transactions are going to
be finally aborted since there are more recent transactions,
from the snapshot version point of view, than they are. The
process of recovery is continued until the recoverer sends
the〈end, Versionj , WSj〉 to the recovering replica. This ver-
sion number is stored inCurrentVersionj for determining
the remainderLogj transfer.
Finishing the Missed Data Transfer Process. When
the previous message is received at the recovering
replica, it will multicast (total order primitive) the
〈start listening, k〉. This message will be silently discarded
at all replicas but the recoverer one. The delivery of this
message marks the end of itsLogj data transfer, as the re-
covery protocol reads the currentVersionj and assigns it to
the variableLatestVersionj. This second data transfer will
comprise from versionCurrentVersionj to LatestVersionj of
theLogj . The data transfer is identical to the first one. How-
ever, the last message is flagged aslatest just to emphasize,
that there are no more pending updates to be transferred.
Thus, the recovering replica is alive.
Queueing of Remote Messages. In parallel to the pre-
vious paragraph, the recovering replica will start listening



from incoming messages of the total order service, although
all of them will be discarded till the〈start listening, k〉

message is delivered. Once it is delivered, it will queue
〈remote, VersionT, WST〉 messages (recall from Figures 2
and 3) coming from theGCS. Once all missed updates of
the second phase are applied, it will start processing these
messages.

4.1. Outline of its Correctness Proof

We make a basic assumption about the system’s behav-
ior: there is always a primary partition and at least one
replica with all the versions installed transits from one view
to the next one.

Lemma 1 (Absence of Lost Updates in Executions without
View Changes). If no failures and view changes occur dur-
ing the recovery procedure, and the recovery procedure is
executed to completion, a nodej ∈ N can resume transac-
tion processing in that partition without missing any update.

Proof (Outline). Let us denote{rν+1, rν+2, . . . , rVj
, . . . ,

rLV } as the set of recovery transactions exclusively ex-
ecuted at the recovering replica associated to each set
of tuples that must be applied. Thus, the set of
tuples to be delivered are:{〈ν + 1, WSν+1〉, 〈ν + 2,

WSν+2〉, . . . , 〈Vj − 1, WSVj−1〉, 〈Vj , WSVj
〉, . . . , 〈LV − 1,

WSLV −1〉, 〈LV, WSLV 〉}. In the same way, let us denote
{tb, . . . , tf} as the set of concurrent committed transactions
during the recovery process, assume they are ordered by the
way they are inserted in theLog. The valuestb andtf stand
for the begin and the end of the recovery process.

Recovery transactions are sequentially executed at the
recovering replicai by what it is stored at theLogj of the
recoverer replicaj. Concurrent executing transactions are
certified by the replication protocol at the rest of replicas.
Hence, they are appended into theLogj that must be trans-
ferred, more precisely the interval of[tb, tVj

], whereb ≤ Vj ,
can be already transferred to the recovering node, i.e. may
be the recovery process is so fast that all concurrent trans-
actions have been applied or so slow that no transaction has
been certified at the recoverer node. In any case, the inser-
tion and application of these transactions is determined by
the way they are inserted in theLogj. The rest of the con-
current transactions ([Vj +1, tf ]) will be applied in the phase
just after the total order〈start listening, i〉 message ex-
change to determine the finalization of the recovery process.
Concurrent transactions from[tf + 1, . . .) will be certified
by the replication in the recovering node as it has finally
achieved the recovery of its missed data.

Lemma 2 (Absence of Lost Updates after a View Change).
A recovering replicai in viewVi that transits to viewVi + 1

resumes the recovery process without missing any update.

Proof (Outline). We have to consider the cases when the re-
coverer node fails. Otherwise, the recovery process remains
unaffected. If the recoverer fails, it will force a “rejoin”to
tell its latest recoveredVersioni so that a recovery process
will take place for it. Hence, no updates will be missed since
we will be under the circumstances of Lemma 1. Assuming
that the time length of installed views is stable enough to
eventually achieve the recovery of a replica without contin-
uously failing recoverers.

Theorem 1(GSIRecovery). Upon successful completion of
the recovery procedure, a recovering replica reflects a state
compatible with theGSIexecution that took place.

Proof (Outline). According to [17] it is sufficient to show
that if a given replication (or recovery) protocol using
SI replicas provides global atomicity and commits update
transactions in the same order at all replicas it providesGSI.

To prove that this implementation is deterministic and
obeysGSI rules, we need to show two properties. The first
property is that at the certification oft, all replicas have the
sameLog andVersion. From the replication protocol point
of view, as we are assuming a replication protocol that en-
suresGSI [2, 9, 16, 18], the concurrent committed transac-
tions during the recovery process are applied in the same
order at all alive replicas. On the other hand, by Lem-
mas 1 and 2, we have shown that the recovery does not
produce lost updates and missing updates in the recovering
replica (nor at any other available node, since the certifi-
cation process remains the same at the rest of replicas) are
applied in the same order they are committed.

5. Optimizations

In this Section we present some optimizations based on
hints included in [9, 14] as well as several novel approaches.
The garbage collection of the Log . As it can be inferred the
Log may become incredibly large and, therefore, difficult to
manage. There can be a thread at each replicak that period-
ically multicasts its current versionVersionk and listens for
incoming versions. Their respectiveLogk can be trimmed
to the minimum version collected from all (available or not)
replicas. Of course, there exists a trade-off between addi-
tion of new replicas (e.g. due to a high workload) and the
garbage collection since it must be omitted or, otherwise,
some replica must be stopped to transfer in the background,
its current state to the new replica; afterwards, both issue
the beginning of a recovery process for both replicas.
Distribution of the recovery process. The solution pro-
posed in our work penalized the performance of the recov-
ering replica. This can be achieved by appointing different
recoverers for different partitions and/or by using several re-
covery threads at the recoverer. However, as they may differ
in their Version, the function that determines the recoverers



must know the latest version in the system. This can be in-
cluded in the initial message of the recovery process in con-
junction with the latest committed version in the recovering
replica. The recovery process may be uniformly distributed,
with the proper range of version intervals. However, special
attention has to be paid during failures in the data recovery
process (specially to recoverer replicas) and possible out
of order delivery ofmsg update(〈snapshot version, WS〉)
messages. On the other hand, there may exist a grouping
process in the recovery thread so that several missed tuples
of theLog can be sent in a single message during the missed
data transfer.
Marking transactions (as read-only or update). This is
specially useful in replicas that belong to a minority par-
tition and have been forced to shutdown due to a network
partition such as WAN environments. As we are ensuring
GSIwe may allow the execution of read-only transactions to
applications even though they are “offline”. This can be an
interesting approach since most of the operations inTPC-W
are read statements.
Addition of new replicas. Up to know we have coped with
what can be considered as “short length” failures (due to its
duration in time or the number of updated items). If we want
to add a new replica with this recovery protocol, no garbage
collection can be done. We have to store all changes done
from the database initial version. Let us see a rough outline
of how we can re-arrange this issue. When a new replica
(or an old one that has been crashed for a long time period)
joins the system, the recovery process starts in the same way
as the previous replication protocol. Instead of transferring
theLogj of the recovererj we start a read-only transaction
(non-blocking) with the current snapshot versionVersionj.
All the tables are transferred to the recovering (or joining)
replica in a similar manner as the missed data transfer of the
recovering protocol. Once all tables are transferred it con-
tinues with theLogj transfer of the missed updates as with
our original proposal. This can be best seen in Figure 5.

6. Related Works

There are several works in the literature that propose sev-
eral alternatives to accomplish database recovery, mainly
due to the use of GCS for an efficient way to provide data-
base replication (i.e. total order of message deliveries, vir-
tual synchrony, etc.). Most of the replication protocols that
have been proposed are best suited for1CSreplication pro-
tocols [3, 12, 14, 15] while only hints (up to our knowledge)
about recovery procedures forGSI replication protocols [9].
Thus, our work presents a novel approach because it pre-
tends to work usingGSI as its default consistency level.

In [15] several solutions to on-line reconfiguration in
replicated databases are proposed making use of view syn-
chrony and enriched view synchrony properties; they do not

Figure 5. Finalization of the recovery process
at recovering replica i

pretend to present one as the best among the different solu-
tions. In [12], three recovery protocols have been also pro-
posed using the virtual synchrony properties for replication
protocols relying on total order message delivery for guar-
anteeing1CS [1]. These recovery techniques are based in
the use of aLog that varies from blocking the system for
transferring the missed data from theLog to relaxing the
blocking need of the system and monitor the state of ongo-
ing transactions during a view change that may include the
writeset of these transactions during the recovery processin
their commit message. In our work we take the advantage of
theLog used for the certification process in order to deter-
mine the data to be transferred, however we do not need to
perform additional tasks on ongoing transactions nor block-
ing the system. Furthermore, we permit the execution of
transactions in the recovering node.

We have based our recovery proposal in the ideas pro-
posed in [14]. Thus, its recovery ideas are pretty similar
to the ones presented in this paper. However, we want to
emphasize the differences. The most important is that the
database is split into partitions, such as stored procedures
of a web page. Ongoing transactions are never blocked by
the execution of the recovery process. This protocol en-
sures the maintenance of the1CSdue to the construction of
database partitions that orders the execution of conflicting
transactions due to the total order message delivery. Our
solution is not restricted to certain patterns of transactions,
the application is free to issue any kind ofSQL statements.
Moreover, transactions may be issued at any replica, includ-
ing the recovering one. This is obtained thanks to theGSI
level we are offering.



Finally, we want to compare our solution to our previous
work [3] that ensures the recovery for1CSusing the proper-
ties of uniform delivery [11] of messages combined with the
virtual synchrony. These facilities provide an easy way to
feature node recovery as it is possible to group the updates
missed by a faulty node by the installed view where they
happened. This information is stored as recovery metadata
in the database. Once a node recovers from a failure, it is
established a set of partitions at all available nodes (as many
as views missed by the recovering node). Thus, those avail-
able nodes that are neither recoverer nor recovering nodes
will access these partitions as usual. However they will get
blocked when they propagate their updates and they con-
flict with a recovery partition at the recovering or the recov-
erer nodes. The recovering node will not be able to access
these objects. The recovering node may start accepting user
transactions as soon as the partitions are set up on it, even
though it is not up to date. We overcome the limitations of
blocking update transactions and read-only transactions in
the recovering node (we proposed to run these transactions
in SI). Moreover, we permit that transactions to be immedi-
ately scheduled in the recovering node.

7. Conclusions

In this paper we have presented a middleware database
recovery protocol whose main novelty is its non-blocking
property for on-going transactions even at the recovering
node (except those update transactions but only at commit
time). This protocol providesGSI [9] in comparison with
previous solutions that were suited for1CS [3, 12, 14, 15].
Furthermore, we have outlined its correctness for provid-
ing GSI. Another feature of this protocol is that it proposes
two alternatives for achieving data state transfer, eitherthe
whole database or only the missed updates. This can be
managed by the system administrator, depending on the
kind of requirements of the application used.

This recovery protocol does not need any additional
metadata from the ones already needed for the certified
replication protocols providingGSI [2, 9, 16, 18]. The re-
joining replica will send its current snapshot version and
one node will be elected as the recoverer replica that will
start a recovering thread that transfers data from theLog in
the background to the recovering replica. This permits the
replication protocol to remain unaffected. Finally, we have
adapted several optimizations somehow outlined in [9, 14]
and we have proposed some other novel optimizations.
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